中文字幕一级黄色A级片|免费特级毛片。性欧美日本|偷拍亚洲欧美1级片|成人黄色中文小说网|A级片视频在线观看|老司机网址在线观看|免费一级无码激情黄所|欧美三级片区精品网站999|日韩av超碰日本青青草成人|一区二区亚洲AV婷婷

您當前的位置:檢測資訊 > 法規(guī)標準

人工智能遇到的可靠性問題

嘉峪檢測網(wǎng)        2017-12-26 17:31

當今我國人工智能如火如荼地開展著,以政府主導,BAT等IT巨頭布局,無人駕駛、智慧城市、人臉識別、語音識別呼之而出。日媒稱:“中國正在人工智能領(lǐng)域迅速崛起。憑借豐厚的科研預(yù)算、優(yōu)秀的相關(guān)領(lǐng)域人才和大數(shù)據(jù)這三大優(yōu)勢,中國正在伺機超越美國……”這些一下把我國人工智能吹上天了。。。

    個人感覺人工智能的發(fā)展還有一段較長的路要走,現(xiàn)有人工智能研究主要側(cè)重于性能方面的突破,但可靠性是一個不可忽視的問題,下面列舉幾個典型問題:


(1)第三方刻意攻擊對語音識別準確率的影響
    據(jù)《新科學家》報道,來自以色列巴伊蘭大學的研究人員和 Facebook 的人工智能團隊已經(jīng)表明,可以對音頻剪輯進行細微地調(diào)整,使語音識別系統(tǒng)理解出與音頻完全不同的內(nèi)容,但是這些細微的調(diào)整并不會影響人類對音頻的正確理解。
    實際上,這樣的情況并不僅限于語音識別,在圖像識別等領(lǐng)域同樣存在。在訓練人工智能系統(tǒng)的過程中,在正常的輸入樣本中故意添加細微的干擾以誤導機器學習算法,使人工智能系統(tǒng)產(chǎn)生錯誤的結(jié)果,這種添加了細微的干擾以誤導機器學習模型的樣本,就是“對抗樣本”。

 

(2)第三方刻意攻擊對無人駕駛可靠性安全性的影響
    無人駕駛安全性應(yīng)該是無人駕駛研發(fā)的突出問題。如果有人惡意使用對抗樣本,它可以用來欺騙自動駕駛汽車,使其不能識別道路上的停車標志,進而引發(fā)事故;可以欺騙語音識別系統(tǒng),讓系統(tǒng)聽到虛假的命令;可以將一只貓識別成一條狗;可以將惡意軟件誤分類為良性軟件,也可以阻止閉路電視監(jiān)控系統(tǒng)在人群中找出嫌犯。而由對抗樣本引發(fā)的欺騙策略也就是常說的“對抗性攻擊”。

 

    Cissé 發(fā)現(xiàn),自動駕駛汽車中的圖片分類算法可能會忽略行人和停放的車輛。他說:“我認為我們應(yīng)該擔心我們?nèi)绾未_保汽車中使用的神經(jīng)網(wǎng)絡(luò)是安全的”。 Cissé 的團隊將少量的數(shù)字噪音引入到一個人的錄音片段,并將該錄音播放給谷歌語音(Google Voice)這款語音識別應(yīng)用程序。在這個對抗性的示例中,該應(yīng)用程序聽到了一個與事實完全不同的句子。
    但是,并不是所有人都認為對抗性攻擊將會在現(xiàn)實世界中發(fā)揮作用。伊利諾伊大學香檳分校的大衛(wèi)•福塞斯(David Forsyth)建立了一個經(jīng)數(shù)字化改變的虛假的停車標志試圖欺騙這種算法。
    雖然沒有證據(jù)表明對抗性攻擊已經(jīng)被用于現(xiàn)實世界中,但是牛津大學的 Marta Kwiatkowska 說,這只是時間問題;機器學習可能會被用于攻擊系統(tǒng)。需要做出更多的研究去發(fā)明新的機器學習技術(shù)抵御對抗性攻擊。
    或許最有趣的是,找到一種避免人工智能系統(tǒng)被對抗樣本欺騙的方法是相當困難的。正如我們過去解釋的那樣,我們并不理解深度神經(jīng)網(wǎng)絡(luò)的內(nèi)在工作方式,這也意味著,我們并不知道為什么神經(jīng)網(wǎng)絡(luò)能夠接受聲音片段和圖像中的細微特征,而人類卻不能覺察到。

 

(3)信息內(nèi)容的可靠性
    基于大數(shù)據(jù)的智慧城市,離不開網(wǎng)絡(luò)信息的提取與支撐?,F(xiàn)代社會網(wǎng)絡(luò)信息極度豐富,作為當前網(wǎng)絡(luò)信息檢索的主要工具,搜索引擎已成為人們訪問互聯(lián)網(wǎng)資源的有效途徑。其中,用戶反饋是算法優(yōu)化、系統(tǒng)維護和性能評估的重要手段,也是網(wǎng)絡(luò)搜索和知識挖掘的重要研究領(lǐng)域之一,已越來越受到研究人員和系統(tǒng)開發(fā)者的關(guān)注。作為用戶反饋的傳統(tǒng)模式,手工評價需要耗費大量的人力和時間資源,難以大規(guī)模地實時開展。因此,如何有效挖掘和利用網(wǎng)絡(luò)用戶檢索反饋的群體智慧信息已受到研究界的廣泛關(guān)注。


    真實網(wǎng)絡(luò)檢索環(huán)境下的用戶點擊行為信息往往含有大量噪音,其中摻雜了包括網(wǎng)絡(luò)爬蟲等非正常的網(wǎng)絡(luò)用戶。Joachims展開了一項稱為眼睛跟蹤研究,結(jié)果表明個體用戶的點擊信息由于搜索引擎結(jié)果排序、內(nèi)容展示等多方面原因而具有偏向性,搜索查詢和點擊文檔之間沒有明顯的絕對相關(guān)性。上述相關(guān)研究表明,有必要對網(wǎng)絡(luò)用戶的行為日志進行分析,進而提煉網(wǎng)絡(luò)用戶點擊的有效信息,過濾噪音。當前用戶行為信息的研究方法主要基于大規(guī)模用戶點擊行為的宏觀統(tǒng)計分析,此類分析方法適用于處理用戶訪問頻度高的熱門詞查詢,不適合處理用戶訪問量較小但數(shù)量眾多的長尾詞查詢,也不適合應(yīng)用于用戶的個性化搜索,針對不同興趣的用戶有區(qū)別地返回搜索結(jié)果。 

    上面列舉的三個問題是僅僅近期網(wǎng)絡(luò)上關(guān)注的,在此僅作拋磚引玉之用。任何產(chǎn)品的研發(fā),質(zhì)量與可靠性方面是產(chǎn)品的核心競爭力之一。若要提高人臉識別、語音識別、無人駕駛汽車等人工智能產(chǎn)品的可靠性水平,不僅僅要關(guān)注硬件,更為關(guān)鍵的將是軟件。

 

分享到:

來源:AnyTesting

相關(guān)新聞: