您當(dāng)前的位置:檢測(cè)資訊 > 法規(guī)標(biāo)準(zhǔn)
嘉峪檢測(cè)網(wǎng) 2022-03-22 09:03
2022年3月9日,國(guó)家藥監(jiān)局器審中心(CMDE)發(fā)布了《人工智能醫(yī)療器械注冊(cè)審查指導(dǎo)原則》,該指導(dǎo)原則適用于人工智能醫(yī)療器械的注冊(cè)申報(bào),包括第二類(lèi)、第三類(lèi)人工智能獨(dú)立軟件和含有人工智能軟件組件的醫(yī)療器械(包括體外診斷器械);適用于自研軟件的注冊(cè)申報(bào),現(xiàn)成軟件組件參照?qǐng)?zhí)行,不適用于外部軟件環(huán)境。也可用作人工智能醫(yī)療器械的體系核查參考。質(zhì)量管理軟件若采用人工智能技術(shù)實(shí)現(xiàn)其功能或用途,亦可參考本指導(dǎo)原則的適用要求。
上述內(nèi)容可以看出,該指導(dǎo)原則是僅針對(duì)軟件部分的指導(dǎo)原則,對(duì)于硬件部分,還應(yīng)按照常規(guī)醫(yī)療器械產(chǎn)品進(jìn)行研究,生產(chǎn),質(zhì)控。
1.人工智能醫(yī)療器械定義
人工智能醫(yī)療器械是指基于“醫(yī)療器械數(shù)據(jù)”,采用人工智能技術(shù)實(shí)現(xiàn)其預(yù)期用途(即醫(yī)療用途)的醫(yī)療器械。
醫(yī)療器械數(shù)據(jù)是指醫(yī)療器械產(chǎn)生的用于醫(yī)療用途的客觀數(shù)據(jù),如醫(yī)學(xué)影像設(shè)備產(chǎn)生的醫(yī)學(xué)圖像數(shù)據(jù)(如X射線、CT、MRI、超聲、內(nèi)窺鏡、光學(xué)等圖像)、醫(yī)用電子設(shè)備產(chǎn)生的生理參數(shù)數(shù)據(jù)(如心電、腦電、血壓、無(wú)創(chuàng)血糖、心音等波形數(shù)據(jù))、體外診斷設(shè)備產(chǎn)生的體外診斷數(shù)據(jù)(如病理圖像、顯微圖像、有創(chuàng)血糖波形數(shù)據(jù)等);在特殊情形下,通用設(shè)備(非監(jiān)管對(duì)象)產(chǎn)生的用于醫(yī)療用途的客觀數(shù)據(jù)亦屬于醫(yī)療器械數(shù)據(jù),如數(shù)碼相機(jī)拍攝的用于皮膚疾病診斷的皮膚照片、健康電子產(chǎn)品采集的用于心臟疾病預(yù)警的心電數(shù)據(jù)等?;卺t(yī)療器械數(shù)據(jù)包括醫(yī)療器械數(shù)據(jù)的生成、使用等情況,其中使用情況含單獨(dú)使用醫(yī)療器械數(shù)據(jù),或者以醫(yī)療器械數(shù)據(jù)為主聯(lián)合使用非醫(yī)療器械數(shù)據(jù)(如患者主訴信息、檢驗(yàn)檢查報(bào)告結(jié)論、電子病歷、醫(yī)學(xué)文獻(xiàn)等)。
由此可見(jiàn),基于非醫(yī)療器械數(shù)據(jù)的醫(yī)學(xué)人工智能產(chǎn)品,或者采用人工智能技術(shù)實(shí)現(xiàn)非醫(yī)療用途和非醫(yī)療器械功能的醫(yī)療器械均不屬于人工智能醫(yī)療器械。因此,與醫(yī)學(xué)相關(guān)的人工智能產(chǎn)品是否按醫(yī)療器械管理,應(yīng)根據(jù)相應(yīng)分類(lèi)界定指導(dǎo)原則進(jìn)行判定,必要時(shí)申請(qǐng)醫(yī)療器械分類(lèi)界定。
2.人工智能醫(yī)療器械的風(fēng)險(xiǎn)管理
指導(dǎo)原則涉及的人工智能醫(yī)療器械僅為軟件部分,因此以下僅對(duì)軟件部分的風(fēng)險(xiǎn)管理進(jìn)行討論。人工智能醫(yī)療器械軟件的風(fēng)險(xiǎn)水平亦可用軟件安全性級(jí)別進(jìn)行表述,軟件安全性級(jí)別越高,其生存周期質(zhì)控要求越嚴(yán)格,注冊(cè)申報(bào)資料越詳盡,同時(shí)由于全新類(lèi)型的潛在未知風(fēng)險(xiǎn)多于成熟類(lèi)型,故需結(jié)合成熟度予以綜合考慮。
人工智能醫(yī)療器械的軟件安全性級(jí)別的判定依據(jù):基于產(chǎn)品的預(yù)期用途、使用場(chǎng)景、核心功能進(jìn)行綜合判定,其中預(yù)期用途主要考慮用途類(lèi)型、重要程度、緊迫程度等因素,使用場(chǎng)景主要考慮使用場(chǎng)合、疾病特征、適用人群、目標(biāo)用戶等因素,核心功能主要考慮功能類(lèi)型、核心算法、輸入輸出、接口等因素。亦可根據(jù)風(fēng)險(xiǎn)管理所確定的風(fēng)險(xiǎn)等級(jí)進(jìn)行判定,軟件安全性級(jí)別與風(fēng)險(xiǎn)等級(jí)的分級(jí)可以不同,但二者存在對(duì)應(yīng)關(guān)系,因此可根據(jù)風(fēng)險(xiǎn)等級(jí)來(lái)判定軟件安全性級(jí)別,但應(yīng)在采取風(fēng)險(xiǎn)控制措施之前進(jìn)行判定。
人工智能醫(yī)療器械的主要風(fēng)險(xiǎn):
從算法角度包括過(guò)擬合和欠擬合,其中過(guò)擬合是指算法對(duì)于訓(xùn)練數(shù)據(jù)過(guò)度學(xué)習(xí)而將非普遍規(guī)律作為重要特征,欠擬合是算法對(duì)于訓(xùn)練數(shù)據(jù)學(xué)習(xí)不充分而遺漏重要特征,均會(huì)降低算法泛化能力。
從用途角度,輔助決策主要包括假陰性和假陽(yáng)性,其中假陰性即漏診,可能導(dǎo)致后續(xù)診療活動(dòng)延誤,特別是要考慮快速進(jìn)展疾病的診療活動(dòng)延誤風(fēng)險(xiǎn),而假陽(yáng)性即誤診,可能導(dǎo)致后續(xù)不必要的診療活動(dòng);非輔助決策從算法設(shè)計(jì)目標(biāo)能否得以實(shí)現(xiàn)角度,亦可參考輔助決策分為假陰性和假陽(yáng)性。
此外,進(jìn)口人工智能醫(yī)療器械還需考慮中外差異風(fēng)險(xiǎn),如人種、流行病學(xué)特征、臨床診療規(guī)范等差異。
3.人工智能軟件開(kāi)發(fā)過(guò)程中與常規(guī)軟件的主要區(qū)別
(一)需求分析
需求分析除了與常規(guī)軟件相同的以用戶需求與風(fēng)險(xiǎn)為導(dǎo)向,結(jié)合產(chǎn)品的預(yù)期用途、使用場(chǎng)景、核心功能,綜合考慮法規(guī)、標(biāo)準(zhǔn)、用戶、產(chǎn)品、數(shù)據(jù)、功能、性能、接口、用戶界面、網(wǎng)絡(luò)安全、警示提示等需求,還應(yīng)重點(diǎn)考慮數(shù)據(jù)收集、算法性能、使用限制等要求。
(二)數(shù)據(jù)庫(kù)建設(shè)
數(shù)據(jù)收集基于合規(guī)性要求,主要考慮數(shù)據(jù)采集、數(shù)據(jù)整理、數(shù)據(jù)標(biāo)注、數(shù)據(jù)集構(gòu)建等活動(dòng)的質(zhì)控要求,以保證數(shù)據(jù)質(zhì)量和算法訓(xùn)練效果。
數(shù)據(jù)采集需考慮采集設(shè)備、采集過(guò)程、數(shù)據(jù)脫敏等質(zhì)控要求,并建立數(shù)據(jù)采集操作規(guī)范。數(shù)據(jù)采集亦可使用歷史數(shù)據(jù),需結(jié)合樣本規(guī)模、采集難度等影響因素合理選擇數(shù)據(jù)采集方式。若適用,數(shù)據(jù)采集需經(jīng)倫理委員會(huì)批準(zhǔn)。
數(shù)據(jù)整理基于原始數(shù)據(jù)庫(kù)考慮數(shù)據(jù)清洗、數(shù)據(jù)預(yù)處理的質(zhì)控要求。數(shù)據(jù)清洗需明確清洗的規(guī)則、方法、結(jié)果,數(shù)據(jù)預(yù)處理需明確處理的方法(如濾波、增強(qiáng)、重采樣、尺寸裁剪、均一化等)、結(jié)果。數(shù)據(jù)整理所用軟件工具(含腳本,下同)均需明確名稱、型號(hào)規(guī)格、完整版本、制造商、運(yùn)行環(huán)境,并進(jìn)行軟件確認(rèn)。
數(shù)據(jù)標(biāo)注作為有監(jiān)督學(xué)習(xí)數(shù)據(jù)質(zhì)控的關(guān)鍵環(huán)節(jié),需建立數(shù)據(jù)標(biāo)注操作規(guī)范,明確標(biāo)注資源管理、標(biāo)注過(guò)程質(zhì)控、標(biāo)注質(zhì)量評(píng)估等要求。
基于標(biāo)注數(shù)據(jù)庫(kù)構(gòu)建訓(xùn)練集(用于算法訓(xùn)練)、調(diào)優(yōu)集1(若有,用于算法超參數(shù)調(diào)優(yōu))、測(cè)試集(用于算法性能評(píng)估),明確訓(xùn)練集、調(diào)優(yōu)集、測(cè)試集的劃分方法、劃分依據(jù)、數(shù)據(jù)分配比例。訓(xùn)練集原則上需保證樣本分布具有均衡性,測(cè)試集、調(diào)優(yōu)集原則上需保證樣本分布符合真實(shí)情況,訓(xùn)練集、調(diào)優(yōu)集、測(cè)試集的樣本應(yīng)兩兩無(wú)交集并通過(guò)查重予以驗(yàn)證。
(三)算法設(shè)計(jì)
1)算法選擇
算法選擇提供所用算法的名稱、類(lèi)型(如有監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí),基于模型、基于數(shù)據(jù),白盒、黑盒)、結(jié)構(gòu)(如層數(shù)、參數(shù)規(guī)模)、輸入輸出數(shù)據(jù)類(lèi)型、流程圖、算法編程框架、運(yùn)行環(huán)境等基本信息,并明確算法選用依據(jù),包括選用的理由和基本原則。
2)算法訓(xùn)練
算法訓(xùn)練需基于訓(xùn)練集、調(diào)優(yōu)集進(jìn)行訓(xùn)練和調(diào)優(yōu),考慮評(píng)估指標(biāo)、訓(xùn)練方式、訓(xùn)練目標(biāo)、調(diào)優(yōu)方式、訓(xùn)練數(shù)據(jù)量-評(píng)估指標(biāo)曲線等要求。
3)算法性能評(píng)估
算法性能評(píng)估作為軟件驗(yàn)證的重要組成部分,需基于測(cè)試集對(duì)算法設(shè)計(jì)結(jié)果進(jìn)行評(píng)估,綜合考慮假陰性與假陽(yáng)性、重復(fù)性與再現(xiàn)性、魯棒性/健壯性、實(shí)時(shí)性等適用評(píng)估要求,以證實(shí)算法性能滿足算法設(shè)計(jì)目標(biāo),并作為軟件驗(yàn)證、軟件確認(rèn)的基礎(chǔ)。亦可基于第三方數(shù)據(jù)庫(kù)(詳見(jiàn)后文)開(kāi)展算法性能評(píng)估。
(四)驗(yàn)證與確認(rèn)
軟件驗(yàn)證與確認(rèn)過(guò)程與常規(guī)非人工智能軟件一致,軟件確認(rèn)部分的測(cè)試可以基于用戶需求,由預(yù)期用戶在真實(shí)或模擬使用場(chǎng)景下予以開(kāi)展,亦可基于測(cè)評(píng)數(shù)據(jù)庫(kù)予以開(kāi)展。
4.人工智能醫(yī)療器械臨床評(píng)價(jià)要求
人工智能醫(yī)療器械的臨床評(píng)價(jià)應(yīng)基于核心功能或核心算法,結(jié)合預(yù)期用途和成熟度予以綜合考慮:非輔助決策類(lèi)功能基于核心功能開(kāi)展同品種醫(yī)療器械比對(duì),全新的功能、算法和用途原則上均需開(kāi)展臨床評(píng)價(jià);輔助決策類(lèi)功能基于核心算法開(kāi)展同品種醫(yī)療器械比對(duì),所選同品種醫(yī)療器械的臨床證據(jù)原則上需基于臨床試驗(yàn)(含回顧性研究),全新的功能、算法和用途原則上均需開(kāi)展臨床試驗(yàn)。
同時(shí),開(kāi)展算法性能比較分析,若各類(lèi)測(cè)試場(chǎng)景(含臨床評(píng)價(jià))算法性能變異度較大,詳述原因并基于分析結(jié)果明確產(chǎn)品使用限制和必要警示提示信息。
最后,結(jié)合算法訓(xùn)練、算法性能評(píng)估、臨床評(píng)價(jià)等結(jié)果開(kāi)展算法性能綜合評(píng)價(jià),針對(duì)訓(xùn)練樣本量和測(cè)試樣本量過(guò)少、測(cè)試結(jié)果明顯低于算法設(shè)計(jì)目標(biāo)、算法性能變異度過(guò)大等情況,對(duì)產(chǎn)品的適用范圍、使用場(chǎng)景、核心功能進(jìn)行必要限制。
5.人工智能醫(yī)療器械相關(guān)技術(shù)研究
1)移動(dòng)計(jì)算與云計(jì)算
人工智能醫(yī)療器械若使用移動(dòng)計(jì)算、云計(jì)算等技術(shù),則遵循相關(guān)指導(dǎo)原則要求。
人因與可用性
2)建議加強(qiáng)人工智能醫(yī)療器械的人因設(shè)計(jì)以提升可用性,將用戶錯(cuò)誤使用的風(fēng)險(xiǎn)降至可接受水平,特別是軟件用戶界面。
3)壓力測(cè)試
注冊(cè)申請(qǐng)人需根據(jù)產(chǎn)品實(shí)際情況開(kāi)展壓力測(cè)試,以全面深入評(píng)估算法性能,必要時(shí)可引入對(duì)抗樣本開(kāi)展對(duì)抗壓力測(cè)試。若未開(kāi)展相應(yīng)測(cè)試或測(cè)試結(jié)果不佳,均需對(duì)產(chǎn)品的適用范圍、使用場(chǎng)景、核心功能進(jìn)行必要限制,并在說(shuō)明書(shū)中明確產(chǎn)品使用限制和必要警示提示信息。
4)對(duì)抗測(cè)試
建議注冊(cè)申請(qǐng)人開(kāi)展對(duì)抗測(cè)試,以全面深入評(píng)估算法性能。若未開(kāi)展相應(yīng)測(cè)試或測(cè)試結(jié)果不佳,均需明確產(chǎn)品使用限制和必要警示提示信息。
5)算法研究報(bào)告
人工智能算法或算法組合再初次發(fā)布和再次發(fā)布時(shí)應(yīng)提交算法研究報(bào)告,包括算法基本信息、算法風(fēng)險(xiǎn)管理、算法需求規(guī)范、數(shù)據(jù)質(zhì)控、算法訓(xùn)練、算法驗(yàn)證與確認(rèn)、算法可追溯性分析、結(jié)論等內(nèi)容。
6.人工智能醫(yī)療器械注冊(cè)資料要求
1)算法研究資料(報(bào)告)
對(duì)于軟件安全性級(jí)別為中等、嚴(yán)重級(jí)別的產(chǎn)品,全新類(lèi)型在軟件研究資料中以算法為單位,提交每個(gè)人工智能算法或算法組合的算法研究報(bào)告;成熟類(lèi)型在軟件研究資料中明確算法基本信息即可,無(wú)需提供算法研究資料。對(duì)于軟件安全性級(jí)別為輕微級(jí)別的產(chǎn)品,在軟件研究資料中明確算法基本信息即可,無(wú)需提供算法研究資料。
2)用戶培訓(xùn)方案
對(duì)于軟件安全性級(jí)別為嚴(yán)重級(jí)別、預(yù)期由患者使用或在基層醫(yī)療機(jī)構(gòu)使用的產(chǎn)品,原則上需單獨(dú)提供一份用戶培訓(xùn)方案,包括用戶培訓(xùn)的計(jì)劃、材料、方式、師資等。
3)產(chǎn)品技術(shù)要求
產(chǎn)品技術(shù)要求中可不含基于測(cè)評(píng)數(shù)據(jù)庫(kù)測(cè)試的性能指標(biāo),也可以含有,若含有該指標(biāo)則需在“附錄”中明確測(cè)評(píng)數(shù)據(jù)庫(kù)的基本信息(如名稱、型號(hào)規(guī)格、完整版本、責(zé)任方、主文檔登記編號(hào)等)。
基于其他類(lèi)型第三方數(shù)據(jù)庫(kù)測(cè)試的性能指標(biāo),原則上無(wú)需在產(chǎn)品技術(shù)要求中體現(xiàn)。
4)說(shuō)明書(shū)
人工智能醫(yī)療器械的說(shuō)明書(shū)相對(duì)于其他軟件產(chǎn)品來(lái)說(shuō),需要增加下列內(nèi)容:
1)對(duì)于輔助決策類(lèi)產(chǎn)品,說(shuō)明書(shū)需明確人工智能算法的算法性能評(píng)估總結(jié)(測(cè)試集基本信息、評(píng)估指標(biāo)與結(jié)果)、臨床評(píng)價(jià)總結(jié)(臨床數(shù)據(jù)基本信息、評(píng)價(jià)指標(biāo)與結(jié)果)、決策指標(biāo)定義(或提供決策指標(biāo)定義所依據(jù)的臨床指南、專(zhuān)家共識(shí)等參考文獻(xiàn))等信息。
2)若采用基于數(shù)據(jù)的人工智能算法,說(shuō)明書(shū)還需補(bǔ)充算法訓(xùn)練總結(jié)信息(訓(xùn)練集基本信息、訓(xùn)練指標(biāo)與結(jié)果)。
3)若產(chǎn)品采用人工智能黑盒算法,則需根據(jù)算法影響因素分析報(bào)告,在說(shuō)明書(shū)中明確產(chǎn)品使用限制和必要警示提示信息。

來(lái)源:CIRS醫(yī)械合規(guī)動(dòng)態(tài)