您當前的位置:檢測資訊 > 科研開發(fā)
嘉峪檢測網 2024-07-09 08:37
摘 要: 對基于碳點的熒光探針設計策略及其在傳感領域的應用進行綜述。介紹包括光致電子轉移、分子內電荷轉移、Förster共振轉移、內濾效應、聚集猝滅和聚集誘導發(fā)射等多種設計策略及其機理,并對碳點熒光探針在重金屬離子、抗生素、農藥殘留、生物小分子和腫瘤標志物等的檢測應用進行詳細論述。碳點熒光探針具有其獨特優(yōu)勢,并已成功應用于多種分子傳感,但其產率低、純化時間長,高熒光性能的碳點缺乏等是未來亟需解決的問題。
關鍵詞: 碳點; 熒光探針; 設計策略; 傳感應用
重要的化學和生物信息的獲取對人類探索化學和生命中各種現象的本質具有重要意義。熒光探針具有靈敏度高、選擇性好、操作方便等優(yōu)點,可對目標進行實時、無損分析,廣泛應用于食品安全、環(huán)境保護、生化分析、藥物檢測、生物成像和疾病診斷等領域[1?2]。熒光探針主要包括識別基團(識別/標記單元)、發(fā)光基團(信號響應單元)和連接橋三部分,其中識別基團決定了不同分析物的選擇性,發(fā)光基團將識別信號轉化為熒光信號[3?4]。傳統(tǒng)有機熒光染料具有較高的熒光量子產率,但其合成復雜,光穩(wěn)定性差,Stokes位移較小,水溶性不佳。近年來,包括半導體量子點(QDs)、貴金屬納米簇和上轉換納米粒子在內的新型納米熒光材料迅速涌現,依賴于獨特的熒光和表面性質以及優(yōu)異的水分散性,被廣泛應用于傳感和生物成像領域[5?7]。然而,其中大多數材料含有重金屬元素,極大地制約了生物相容性。
碳點(CDs)是一種粒徑在10 nm以下的零維碳材料粒子,具有sp2或sp3雜化的晶型或無定型內核,表面擁有豐富的含氧基團,包括—OH、—COOH、—COH等[8]。碳點具有優(yōu)異的生物相容性、穩(wěn)定的結構和理化性質、獨特的光學特性、表面基團豐富和碳源廣泛易得等優(yōu)點,已被廣泛應用于能源、環(huán)境和生物醫(yī)學等諸多領域[9]。在碳點諸多理化性質中,熒光發(fā)射被認為最重要的,目前對于發(fā)光機理有多種解釋,其中量子限制效應、表面態(tài)、碳核態(tài)、分子熒光和協同效應是廣泛被接受的發(fā)光機制理論[10?11]。同時,可通過溶劑效應、濃度效應、pH值調節(jié)、雜原子摻雜和表面修飾等方面對碳點熒光性質進行調控[11?12]。
筆者對碳點熒光探針的設計策略和在傳感領域的應用進行總結,分析了所面臨的一些挑戰(zhàn),期待為基于碳點熒光探針的開發(fā)與應用提供新的思路和方法。
1、 基于碳點的熒光探針設計策略
基于碳點的熒光探針的設計主要有光致電子轉移(PET)、分子內電荷轉移(ICT)、Förster共振轉移(FRET)、內濾效應(IFE)、聚集猝滅(ACQ)和聚集誘導發(fā)射(AIE)等策略。
1.1 光致電子轉移
PET系統(tǒng)由信號響應單元、連接橋和識別受體組成,通過受體和熒光團之間的電子轉移影響熒光強度。根據電子傳遞方向,PET可分為a-PET和d-PET兩類。Huang等[13]報道了基于碳點與四環(huán)素(TC)之間PET過程的多功能檢測平臺。TC在光誘導下達到激發(fā)態(tài),電子瞬間從TC (電子供體)的HOMO軌道轉移到CDs (電子受體)的HOMO軌道,CDs被激發(fā)的熒光團被還原,導致熒光強度下降,即a-PET。Ghosh等[14]將水熱處理檸檬皮所得碳點與不同聚酰胺胺(PAMAM)樹枝狀大分子偶聯得到CD-PAMAM偶聯物(CDPs),其中CDP3可高選擇性檢測Cu(Ⅱ)。Cu(Ⅱ)與CDP3的胺基絡合導致Cu(Ⅱ)的d軌道分裂,導致電子從CDP3的激發(fā)態(tài)轉移到Cu(Ⅱ)的d軌道,導致熒光猝滅,猝滅率高達93%,即d-PET。因此,在a-PET中,受體的最高占據分子軌道(HOMO)的能級遠高于熒光團,電子從受體轉移到熒光團。對應地在d-PET中,電子轉移是從熒光團的激發(fā)態(tài)轉移到受體的最低未占據分子軌道(LUMO)。
1.2 分子內電荷轉移
Zhang等[15]溶劑熱處理2-硝基-4-氨基二苯胺合成了選擇性的光氣響應碳點,其表面胺基可與光氣發(fā)生酰胺反應。碳點表面富電子的羥基/胺基與吸電子的硝基形成推拉電子體系,引發(fā)ICT過程產生熒光。當光氣與表面胺基反應后,減少了胺基數量,同時引入羰基增加了吸電子基團,促進了電荷轉移過程,導致發(fā)生紅移,因此,電子給體(D)和電子受體(A)形成一個大的D-π-A共軛結構。分析物的加入可能會影響D或A的推或拉電子能力,從而導致熒光光譜的藍移或紅移。
1.3 Förster共振轉移
Mahani等[16]報道了基于碳量子點(CQDs)的分子信標(MB)信號增強熒光共振轉移(FRET)納米生物傳感器,用于熒光檢測microRNA-21。在MB處于“off”狀態(tài)下,CQDs的發(fā)射光譜與淬滅分子的吸收光譜的重疊,導致熒光信號很弱。將microRNA-21分子加入到樣品中,發(fā)卡型的MB打開,CQD與猝滅分子距離增加,從而觀察到CQD的熒光發(fā)射。Förster共振轉移體系含有兩個熒光團,分別作為能量供體和能量受體,這兩個分子之間通過偶極-偶極耦合進行低輻射能量轉移。此現象的發(fā)生需要兩個基團的距離非常近,并且供體發(fā)射光譜和受體吸收光譜必須重疊。分析物的加入可能改變供體和受體之間的距離或改變供體或受體的吸收或發(fā)射光譜,從而干擾FRET過程,導致熒光波長和強度的變化。
1.4 內濾效應
He等[17]利用銀納米粒(AgNPs)與碳點之間的IFE,設計用于檢測亞硫酸鹽和亞硫酸氫鹽(SO32-/HSO3-)的新型熒光探針(CDs-AgNP/H2O2)。由于AgNPs的吸收和CDs的激發(fā)之間的光譜重疊,CDs的熒光可以被AgNPs猝滅,H2O2通過氧化AgNPs減弱IFE,恢復熒光。然而,當SO32-/HSO3-存在時,可與H2O2發(fā)生氧化還原反應,導致熒光再次猝滅。值得注意的是,AgNPs與CDs距離較大,且存在AgNPs的情況下,CDs的熒光壽命基本不受影響,說明CDs與AgNPs之間沒有能量轉移。IFE同樣需要熒光團與受體存在光譜重疊,但與FRET機理不同的是兩者之間沒有嚴苛的距離要求,且不存在能量轉移過程,因此熒光壽命沒有明顯變化。
1.5 聚集猝滅
Wang等[18]設計合成了可重復利用的紅色發(fā)射碳點(R-CDs),利用水誘導的R-CDs聚集猝滅現象,實現了乙醇含量的測定。這可歸因于水分子對R-CDs的表面吸附,中和了部分負電荷,導致粒子間靜電排斥力減弱促進聚集的發(fā)生。熒光團在稀溶液中表現出強烈熒光,但在高濃度或固態(tài)下熒光強度下降或消失,這種現象即聚集猝滅。ACQ探針主要受氫鍵、疏水效應、靜電相互作用、堆積等影響。
1.6 聚集誘導發(fā)射
Wan等[19]微波合成了具有AIE特性的親水性黃色熒光碳點(Y-CDs),其在水溶液中表現出微弱的黃色熒光(PLQY=6.14%),而在固態(tài)下熒光顯著增強(PLQY=58.35%)。Y-CDs在溶液中的熒光發(fā)射強度隨著不良溶劑組分的增加而持續(xù)增加,這是由于聚集可以抑制表面基團的運動,降低非輻射率。與ACQ相對的AIE是指分子在稀溶液中不發(fā)光,但在高濃度或固態(tài)下表現出強烈的熒光。分子內運動(RIM)機制是AIE的普遍機制:即在聚集狀態(tài)下,AIE分子內鍵的振動和旋轉受到周圍分子的相互作用或自然物理約束的極大限制,從而抑制了非輻射衰減通道,導致高發(fā)光。
2、 基于碳點的熒光探針傳感應用
熒光發(fā)射作為碳點最重要的性質,被廣泛應用于能源、環(huán)境和生物醫(yī)學領域。
2.1 重金屬離子傳感應用
重金屬離子如Fe3+、Hg2+、Cu2+、Pb2+、Ag+、Au+、Cr3+、Al3+等廣泛存在于工業(yè)廢水中,對環(huán)境安全和人類安全存在巨大隱患[20]。金屬離子可通過多種機理與碳點相互作用,對其熒光強度產生影響。在金屬離子與CDs相互作用過程中,熒光增強很少被觀察到,但熒光猝滅已被大量報道[21]。目前用于金屬離子檢測的探針已被大量報道,但是新的選擇性、高靈敏、低成本的重金屬檢測器仍是必要的。
鐵是人體必需微量元素,以Fe2+和Fe3+形式存在,過量的鐵元素是導致多種疾病的重要因素,其中由不溶的Fe3+產生自由基危害更大。Shah等[22]選擇鐵離子螯合劑N-羥乙基乙二胺三乙酸(HEDTA)為原料,一步水熱制備了N摻雜碳點,在0.76~400 μmol/L濃度范圍內表現出良好的線性響應,檢測限(LOD)低至0.16 μmol/L,表現出優(yōu)越的靈敏性和選擇性。檸檬酸/氨水衍生碳點表面含有豐富的—OH、—COOH、—NH2和—C=O等官能團,可輕易與Fe3+絡合,從而限制電子轉移導致CDs的熒光猝滅,雖然其LOD僅為0.9 μmol/L,但以此所制備的試紙和復合水凝膠相較于傳統(tǒng)水溶液使用更加方便[23]。然而低激發(fā)波長限制了碳點的體內應用,Xu等[24]報道藍/紅雙色發(fā)射碳點(DCDs),低激發(fā)波長下對Fe3+具有良好的響應,LOD低至0.067 μmol/L;而在高激發(fā)波長下表現出紅色發(fā)射可用于細胞成像。Sun等[25]利用碳點修飾上轉換納米粒子作為熒光納米探針(UCNPs@CDs)用于Fe2+/Fe3+共檢測?;诜?、秸稈、西瓜、梅子、哈密瓜等天然來源碳點也被報道用于Fe3+的熒光傳感[26?29]。
汞離子(Hg2+)作為毒性最強的重金屬離子之一,在環(huán)境中容易積累,并沿食物鏈產生富集,對生態(tài)系統(tǒng)及人類健康產生潛在危害[30]。比率型熒光探針檢測Hg2+,提高了檢測靈敏度[31?32]。Li等[33]合成了藍色碳點和綠色碳點,提高了檢測靈敏度,彌補了單個碳點的不足,對Hg2+有較好的選擇檢測效果,肉眼檢出限可達0.05 μmol/L。Fan等[34]報道基于熒光試紙的傳感器,與智能手機結合,實現了快速的視覺定量檢測,降低分析時間和成本。有機汞化合物毒性遠高于無機汞,Li等[35]利用去甲腎上腺素衍生碳點與金納米粒子合成了具有高靈敏度的納米酶復合物(NA-CDs/AuNPs),用作甲基汞(MeHg+)檢測的新型比色探針,檢出限為0.06 μg/L。區(qū)別于其他“on-off”型探針,Yadav等[36]構建碳點摻雜二氧化硅復合材料(CD@DFNS@SH),Hg2+存在時PET過程被破壞,導致CDs的紅色熒光恢復。
鉛離子(Pb2+)也是毒性最強的重金屬元素之一。Liu等[37]以半胱氨酸偶聯碳點與金納米粒構建了“off-on”型FRET熒光探針,實現對Pb2+高選擇性傳感,LOD低至0.05 μmol/L。Wang等[38?39]通過ZIF-8封裝雙碳點或利用GSH修飾金屬無響應碳點構建了雙發(fā)射比率型熒光檢測平臺,LOD分別為4.78 nmol/L和2.7 nmol/L,進一步提高了對Pb2+檢測靈敏度。Yong等[40]以藍藻為碳源實現碳點的克級制備,獲得了具有三重發(fā)射的紅光碳點(RCDs),在固態(tài)下具有良好的熒光,成功用作Pb2+和pH的可視化比率熒光傳感器,實現了更為綠色高效的策略。而基于雙發(fā)射碳點的比率型紙傳感器的出現實現了對Pb2+的可視化檢測,更好地適應多變的檢測環(huán)境[41?42]。Olorunyomi等[43]將金納米粒子和巰基功能化碳點修飾在金屬有機框架(MOF)表面,實現了對低水平重金屬進行低水平響應。
基于碳點的熒光探針也廣泛應用于Cu2+、Ag+、Al3+等其他金屬離子的檢測[44?47]。相較于單離子響應探針,多金屬響應的碳點可實現對復雜樣本中多種重金屬離子的同時檢測[48?50]。Xu等[51]過一步水熱法合成氮硫共摻雜碳點(N,S-CDs),用于Fe3+和抗壞血酸(AA)的次序檢測。Fe3+與碳點表面基團絡合形成復合物,導致熒光的靜態(tài)猝滅,LOD僅為57 nmol/L;而AA通過Fe3+還原為Fe2+有效地恢復了猝滅熒光,LOD為38 nmol/L?;谶@種“on-off-on”策略,多樣的探針被設計合成,可實現金屬離子與其他物質的順序檢測,包括生物硫醇、陰離子、抗生素、抗壞血酸和鳥苷酸等[51?55]。對于環(huán)境安全與公共健康而言,具有定量檢測和清除的雙重功能的熒光復合材料尤為重要,不僅可實現對金屬離子高選擇性測定,還可表面吸附生成穩(wěn)定的復合物以實現清除[56?58]。
2.2 抗生素傳感應用
抗生素的誤用及濫用產生并加劇了細菌的耐藥性,嚴重威脅全球生物與環(huán)境健康。Dang等[59]制備了基于“on-off-on”策略高選擇的N摻雜碳點,對銅離子和聯吡啶進行次序檢測,LOD分別為0.076 nmol/L和0.4 nmol/L。Cheng等[60]合成了具有橙色發(fā)光的水溶性N,S共摻雜碳點(N,S-CDs),基于IFE機制用作金霉素(CTC)和槲皮素的多功能檢測平臺,克服了短波長的缺陷,實現了水、牛奶樣品中CTC和啤酒樣品中槲皮素的檢測,LOD分別為32.36 nmol/L和6.87 nmol/L,并用于細胞成像。此外,為增強碳點熒光強度,提高檢測靈敏度,包括MOF、二氧化硅微球等多種納米材料與碳點結合構建了新型傳感材料[61?62]。Fu等[63]將具有斯托克斯型和反斯托克斯型發(fā)射的雙模CDs錨定在功能載體上,通過配位效應和信號放大效應提高熒光靈敏度。該熒光傳感器具有下/上轉換雙激勵多發(fā)射特性,可用于甲砜霉素(TAP)的精確、靈敏和選擇性可視檢測,下行通道和上行通道的LOD分別為1.9 nmol/L和0.9 nmol/L。此外,便攜的基于碳點熒光探針智能手機集成熒光傳感裝置被用來替代昂貴的熒光分光光度計,使檢測過程變得高效、經濟,適應復雜多變的檢測場景[55]。Zhang等[64]成功制備了基于N,P共摻雜碳點修飾鐵基MOF,并與分子印跡聚合物(MIP)結合得到了新型熒光仿生傳感探針(NH2-MIL-53&N,P-CDs@MIP),用于選擇性檢測CTC。在最佳條件下,NH2-MIL-53&N,P-CDs@MIP探針對LOD僅為0.019 μg/mL,更重要的是,利用該探針的便攜性智能手機集成熒光傳感裝置實現了對CTC的定量測定,LOD為0.033 μg/mL。此外,基于散沫花、桂花葉、火龍果皮、圣羅勒、番木瓜籽、番茄莖等綠色來源碳點也被應用于抗生素檢測[65?70]。
2.3 農藥傳感應用
農藥殘留對生態(tài)系統(tǒng)和人類健康造成巨大威脅。酶抑制型探針已被廣泛應用于農藥的檢測,農藥作為酶抑制劑可間接影響熒光強度。乙酰膽堿酯酶(AChE)可催化乙酰膽堿(ATCh)生成含有巰基的硫代膽堿(Tch),Tch對金屬離子有較高的親和力,因此AChE在農殘檢測中被廣泛應用[71]?;贑u2+離子對碳量子點表面羧基的親和力與硫代膽堿之間的競爭配位作用,Mahmoudi等[72]成功設計了AChE抑制型碳點熒光探針,并成功用于馬拉硫磷和毒死蜱兩種有機磷農藥的高效檢測,檢出限分別為1.70、1.50 μg/mL。Li等[73]建立了雙發(fā)射型羅丹明B修飾硫量子點(RhB-SQDs)傳感平臺,通過調節(jié)堿性磷酸酶(ALP)活性,對天然水樣和蔬菜中有機氯農藥2,4-D進行檢測。底物對硝基苯磷酸鹽(PNPP)經堿性磷酸酯(ALP)水解產生對硝基苯酚(PNP),由于IFE導致RhB-SQDs在455 nm處熒光猝滅,2,4-D通過抑制ALP中斷酶促反應減弱IFE致使熒光恢復。然而,酶活性受多種因素影響,對檢測的要求比較苛刻,且成本較高,因此無酶的農殘?zhí)结権酱鉀Q。通過摻雜策略改善碳點表面形態(tài),協調熒光性質,借助自身官能團與農藥分子之間的相互作用對熒光強度產生影響,從而達到定量檢測的目的[74?75]。Zhao等[76]水熱處理聚丙烯酸和磷酸制備了橙色發(fā)光碳點,通過“on-off-on”模式定量分析Ag+和草甘膦,LOD分別為1.8 μmol/L和6.2 μmol/L。此外,為提高抗干擾能力,結合了MIP、多孔印跡微球(MIMs)、適配體、抗體等特異性識別單元的新型碳點熒光探針檢測平臺被大量報道,并成功用于多種樣品的農殘檢測[77?80]。Nair等[81]建立了硫摻雜石墨烯量子點(S-GQD)傳感器,通過S-GQD-適配體復合物與適配體-氧樂果復合物的結構切換,可實現對氧樂果的高選擇和超靈敏檢測。簡單來說,S-GQD通過與適配體形成復合物發(fā)生聚集導致熒光猝滅,當與適配體親和力更高的氧樂果加入后,S-GQD-適配體復合物發(fā)生分解,S-GQD重新分散致使熒光恢復。該檢測器對目標分子具有極高的靈敏度,LOD低至1 μg/mL,即使在多干擾混合的復雜樣品中仍保持極高的選擇性,更值得注意的是,S-GQD可通過簡單處理進行回收,以便進一步利用。
2.4 生物小分子傳感應用
碳點熒光探針還被廣泛用于生物小分子檢測。包括半胱氨酸(Cys)、同型半胱氨酸(Hcy)和谷胱甘肽(GSH)在內的生物硫醇在生物系統(tǒng)中普遍存在,體內生物硫醇水平異常與多種疾病相關[82]。Sun等[83]溶劑熱處理3-二乙氨基苯酚制備了綠色發(fā)射碳點,并對其進行2,4-二硝基苯磺?;?DNBS)共價修飾,得到功能化CDs (g-CD-DNBS)作為生物硫醇的納米探針。添加生物硫醇后,探針的DNBS基團被硫醇基團去除,這導致綠色熒光逐漸恢復,Cys、Hcy和GSH檢出限分別為69、74、69 nmol/L。然而,較小的Stocks位移制約了其體內應用。為此,Liu等[84]采取兩步碳化法合成了新型碳點(Scy-CDs),Stokes位移達到106 nm,表現出敏感的“on-off-on”熒光行為。由于d-PET過程,Scy-CDs具有顯著的pH依賴性行為,在pH值7.0~3.92范圍內熒光猝滅,而加入Cys/Hcy后,d-PET被有效抑制,熒光完全恢復。值得注意的是,細胞定位實驗顯示碳點可用于溶酶體成像,表明Scy-CDs可在亞細胞水平上監(jiān)測溶酶體H+和Cys/Hcy。碳點-金納米簇復合材料所構建的比率型熒光探針具有減少外部干擾,提高檢測靈敏性的特性[85],同時多種基于生物硫醇與金屬離子親和力的金屬離子摻雜碳點也被用于生物硫醇檢測[82?86]。
多巴胺(DA)作為一種神經遞質可調節(jié)大腦中多種生理過程,理想化熒光探針對于DA相關疾病的早期檢測與治療是必不可少的。Sangubotla等[87]制備了姜黃素衍生碳點,并對其進行3-氨丙基三乙氧基硅烷(APTES)功能化修飾,將漆酶共價固定在其表面,得到了新型生物探針(APTG-CDs),對多巴胺在0~30 μmol/L范圍內呈顯著的線性熒光猝滅,檢出限為41.2 nmol/L,并在血清和腦脊液樣本中表現出良好的實用性。Tang等[88]將N-[3-(三甲氧基硅基)丙基]乙二胺(AEATMS)與DA經溫和縮合反應生成氨基硅烷功能化碳點(SiCDs),可直接用于探測多巴胺。金屬或非金屬摻雜的熒光/比色雙模碳點傳感器可實現無儀器檢測,簡化檢測過程[89?90]。
糖尿病嚴重威脅人類健康,迫切需要設計高靈敏度、高選擇性、高可靠性的葡萄糖檢測方法。Li等[91]利用可逆動態(tài)共價鍵將多羥基碳點組裝在苯硼酸(PBA)分子刷修飾的磁性納米顆粒上,制備了新型復合熒光探針,葡萄糖LOD低至0.15 μmol/L。葡萄糖在葡萄糖氧化酶(GOx)的作用下,被催化水解為H2O2和葡萄糖酸,通過監(jiān)測反應生成物可間接檢測葡萄糖[92]。Zhu等[93]開發(fā)了基于Ti3C2納米片和紅色發(fā)射碳點(RCDs)的高效檢測傳感器,Ti3C2通過IFE可有效猝滅RCDs熒光。利用GOx催化葡萄糖產生的H2O2氧化Ti3C2納米片導致熒光恢復,從而實現葡萄糖的高靈敏定量檢測。Rossini等[94]基于酶促反應的熒光碳點紙平臺成功用于血清與尿液樣本中葡萄糖檢測。Zhang等[95]建立雙模(比色法和熒光法)檢測葡萄糖,并與智能手機結合,提高了檢測便捷性。酶活性容易受到多種因素影響,對于檢測要求較高,不利于復雜樣本檢測。Chao等[96]結合pH高度敏感的熒光探針與具有GOx活性的AgNPs,開發(fā)了用于葡萄糖檢測的新型熒光探針,并通過綠色制備工藝制備了兩種淀粉基固態(tài)材料。除上述的小分子外,碳點熒光探針也被廣泛應用于尿酸、膽固醇、ATP、活性氮、H2S和維生素等其他生物小分子檢測[97-102]。
2.5 腫瘤標志物傳感應用
腫瘤標志物是一類可在血漿或其他體液中檢測到的分子,可以預測腫瘤的行為。碳點依賴固有光學性質已成功用于多種腫瘤相關生物標志物的檢測。Qi等[103]制備了高量子產率的熒光N,P共摻雜碳點(N,P-Cdots),利用抗原-抗體特異性識別選擇性的對癌胚抗原(CEA)進行定量檢測,最佳條件下LOD僅為1 nmol/L。Bharathi等[104]基于FRET開發(fā)了超靈敏的全石墨烯量子點(GQD)熒光探針,用于卵巢癌生物標志物人附睪蛋白4 (HE4)的定量檢測。最佳條件下,比率型探針LOD低至4.8 pmol/L,具有4 pmol/L~300 nmol/L的超大動態(tài)范圍。Han等[105]利用特異性抗體分別標記碳點和AgNPs,當HE4存在時,通過抗原-抗體相互作用形成CDs-HE4-AgNPs三明治復合物?;诮饘僭鰪姛晒?MEF)效應,AgNPs可作為信號放大器,顯著增強納米平臺熒光強度,實現對HE4的高效檢測。Deb等[106]采取更為綠色的方法,通過微波處理甜橙汁合成了生物源碳點(OCD)并與IgG偶聯,制得免疫傳感器(IgG-OCD),用于血管內皮生長因子(VEGF)的檢測。最佳條件下,該免疫傳感器表現出較寬的線性范圍(0.1 fg/mL~10 pg/mL),極高的靈敏度(LOD=5.65 pg/mL)和良好的抗干擾能力,并成功用于實際樣本的檢測。
除蛋白類標志物外,某些酶也在腫瘤細胞內過量表達。Sidhu等[107]制備功能化碳點(fCDs),可通過“on-off-on”策略實現對硫氧還蛋白還原酶(TrxR)的檢測。碳點表面DTPA可與Cu2+絡合導致fCDs的藍色熒光淬滅,而在TrxR作用下DTPA的二硫鍵被還原,釋放Cu2+強雙齒螯合劑3-巰基丙酸將Cu2+帶離CDs表面,CDs熒光強度恢復,表現出較強的抗干擾能力和親和作用,LOD低至20 nmol/L。Behi等[108]通過JR2EC多肽偶聯熒光碳點和AuNPs,設計了納米生物平臺用于檢測唾液腺癌生物標志物金屬蛋白酶-7 (MMP-7)。JR2EC多肽與MMP-7具有極高的親和力,MMP-7的存在會導致JR2EC多肽裂解,從而破壞納米探針結構,使得碳點猝滅的熒光恢復,該設計為生物標志物檢測提供新的思路,通過不同的多肽序列,可用作通用的多類型診斷平臺。Zhang等[109]報道了由單分子DNA結構和石墨烯量子點構成的功能性納米復合材料,作為診斷探針檢測活細胞中無嘌呤/無嘧啶核酸內切酶1 (APE1)。值得注意的是,在該探針中GQDs并不是作為熒光基團,而是作為猝滅劑屏蔽APE1作用前的熒光信號。少量的細胞APE1即可通過酶循環(huán)過程觸發(fā)熒光信號大量累積,因此診斷探針敏感度極高(LOD=0.29 pmol/L),可通過不同細胞APE1表達水平區(qū)分同類型活細胞。
此外,某些分子也可作為標志物,用于腫瘤的早期診斷過程。Mahani等[16]報道了基于CQDs的分子信標(MB)信號增強FRET納米生物傳感器,用于熒光檢測microRNA-21,為腫瘤的早期診斷提供了有價值的工具。Li等[110]利用茜素胭脂紅制備了比率型熒光探針,用于高靈敏的區(qū)分正常細胞和癌細胞。Rajalakshmi等[111]制備了無金屬熒光碳點(TAG-CDs),選擇性檢測前列腺標志物檸檬酸鹽,該探針可輕易穿過細胞膜,實現對活細胞中檸檬酸的細胞成像,并對尿液樣品中檸檬酸含量進行測定。
單一標志物的敏感性或特異性無法滿足臨床要求,而多標志物同時檢測的探針則可彌補這一缺陷。He等[112]基于CDs與氧化石墨烯(GO)之間的FRET,并結合催化發(fā)夾自組裝(CHA)開發(fā)了通用的檢測方法。在沒有目標物的情況下,CD標記的發(fā)夾DNA吸附到GO上,導致熒光猝滅,而目標物的引入可以觸發(fā)CHA形成Y型雙鏈DNA (dsDNA),從而恢復CD的熒光信號。該方法可用于前列腺特異性抗原(PSA)、CEA和ATP的檢測,LOD分別為0.22 ng/mL、0.56 ng/mL和80 nmol/L。Wang等[113]結合氧化石墨烯量子點(GOQDs)和微流控芯片優(yōu)勢,開發(fā)了通用生物傳感平臺,可同時檢測多種腫瘤生物標志物,該生物芯片能夠在40 min內同時檢測包括癌胚抗原CEA、癌抗原125 (CA125)、甲胎蛋白(AFP)、癌抗原199 (CA199)和癌抗原153 (CA153)等臨床樣本中的多種生物標志物,最重要的是,所需檢測樣品量僅為2 mL,同時具有極寬的線性定量范圍(5 pg~0.5 mg)和較低的檢出限(1 pg/mL)。Wang等[114]通過硅氧鍵結合樹枝狀介孔二氧化硅納米顆粒(DMSN)和熒光碳點(CD560)制備了新型納米熒光探針,采用熒光側流免疫分析法(FLFIA)實現對腫瘤標志物CA125和HE4的雙重檢測。碳點的黃色熒光可以消除藍色背景,提高檢測靈敏度,而DMSN的存在不僅有利于CDs的穩(wěn)定發(fā)光,同時起到信號放大的作用。
3、 展望
碳點作為一種新興納米材料,具有生物相容性好、表面基團豐富、理化性質穩(wěn)定、碳源豐富易得的等諸多優(yōu)點。相較于傳統(tǒng)有機熒光染料和半導體熒光納米材料,碳點表現出更為優(yōu)異的水溶性、光穩(wěn)定性和生物相容性,已成為新型熒光探針設計的熱點分子。同時,碳點熒光探針的研究也面臨諸多挑戰(zhàn):碳點合成產率較低,且純化過程耗時較長,不利于探針的大規(guī)模制備;高熒光性能的碳點仍然缺乏,雖然有研究指出了協調熒光的方法,但其制備結果仍有不可控性。
總之,碳點熒光探針具有其獨特優(yōu)勢,并已成功用于多種分子傳感,期待對上述缺陷進行有效改進,為基于碳點熒光探針的開發(fā)利用提供新思路。
參考文獻
1 SUN F,YANG L,LI S J,et al. New fluorescent probes for the sensitive determination of glyphosate in food and environmental samples[J]. Journal of Agricultural and Food Chemistry,2021,69(43): 12 661.
2 DUAN N,YANG S X. Research progress on multifunctional fluorescent probes for biological imaging,food and environmental detection[J]. Critical Reviews in Analytical Chemistry,2022: 1.
3 MENG W Q,SUN M X,XU Q Q,et al. Development of a series of fluorescent probes for the early diagnostic imaging of sulfur mustard poisoning[J]. ACS Sensors,2019,4(10): 2 794.
4 DOU W T,HAN H H,SEDGWICK A C,et al. Fluorescent probes for the detection of disease-associated biomarkers[J]. Science Bulletin,2022,67(8): 853.
5 SUN H,ZHOU P,SU B. Electrochemiluminescence of semiconductor quantum dots and its biosensing applications:A comprehensive review[J]. Biosensors,2023,13(7): 708.
6 SHARMA A K,PANDEY S,SHARMA N,et al. Synthesis of fluorescent molybdenum nanoclusters at ambient temperature and their application in biological imaging[J]. Materials Science and Engineering:C,2019,99: 1.
7 LIN G G,JIN D Y. Responsive sensors of upconversion nanoparticles[J]. ACS Sensors,2021,6(12): 4 272.
8 WU J J,CHEN G L,JIA Y N,et al. Carbon dot composites for bioapplications:A review[J]. Journal of Materials Chemistry B,2022,10(6): 843.
9 KHAYAL A,DAWANE V,AMIN M A,et al. Advances in the methods for the synthesis of carbon dots and their emerging applications[J]. Polymers,2021,13(18): 3 190.
10 MALAVIKA J P,SHOBANA C,SUNDARRAJ S,et al. Green synthesis of multifunctional carbon quantum dots:An approach in cancer theranostics[J]. Biomaterials Advances,2022,136: 212 756.
11 DU F F,YANG L P,WANG L L. Synthetic strategies,properties and sensing application of multicolor carbon dots:recent advances and future challenges[J]. Journal of Materials Chemistry B,2023,11(34): 8 117.
12 ANSARI L,HALLAJ S,HALLAJ T,et al. Doped-carbon dots:Recent advances in their biosensing,bioimaging and therapy applications[J]. Colloids and Surfaces B:Biointerfaces,2021,203: 111 743.
13 HUANG J Y,LONG C C,ZHANG L,et al. Carbon dots for all-in-one detection and degradation:The role of photoinduced electron transfer[J]. Journal of Environmental Chemical Engineering,2022,10(6): 108 951.
14 GHOSH S,GHOSAL K,MOHAMMAD S A,et al. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy[J]. Chemical Engineering Journal,2019,373: 468.
15 ZHANG J,LI Y Y,HU J Y,et al. Rapid colorimetric and ratiometric fluorescence method for on-site detection and visualization of phosgene by amino-functionalized carbon dot-based portable droplet system[J]. Chemical Engineering Journal,2023,452: 139 173.
16 MAHANI M,MOUSAPOUR Z,DIVSAR F,et al. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21[J]. Microchimica Acta,2019,186(3): 132.
17 HE Y Y,WANG Y B,WANG S J. Carbon dot and silver nanoparticle-based fluorescent probe for the determination of sulfite and bisulfite via inner-filter effect and competitive redox reactions[J]. Microchimica Acta,2023,190(5): 190.
18 WANG C Z,LI J X,WANG X J,et al. Reusable red emission carbon dots based smartphone sensing platform for three-mode on-site real-time detection of alcohol content[J]. Sensors and Actuators B:Chemical,2023,397: 134 690.
19 WAN Z J,LI Y M,ZHOU Y Z,et al. High‐efficiency solid‐state luminescence from hydrophilic carbon dots with aggregation‐induced emission characteristics[J]. Advanced Functional Materials,2023,33(11): 2 207 296.
20 LANDA S D T,REDDY BOGIREDDY N K,KAUR I,et al. Heavy metal ion detection using green precursor derived carbon dots[J]. iScience,2022,25(2): 103 816.
21 BATOOL M,JUNAID H M,TABASSUM S,et al. Metal ion detection by carbon dots—A review[J]. Critical Reviews in Analytical Chemistry,2020,52(4): 756.
22 SHAH H,XIN Q,JIA X R,et al. Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron(III) sensing[J]. Arabian Journal of Chemistry,2019,12(7): 1 083.
23 LIU Z,JIA R N,CHEN F,et al. Electrochemical process of early-stage corrosion detection based on N-doped carbon dots with superior Fe3+ responsiveness[J]. Journal of Colloid and Interface Science,2022,606: 567.
24 XU Y L,MO R X,QI C Y,et al. Dual-property blue and red emission carbon dots for Fe(III) ions detection and cellular imaging[J]. Rare Metals,2020,40(7): 1 957.
25 SUN Y L,ZHANG X P,ZHAO C X,et al. Upconversion nanoparticles/carbon dots (UCNPs@CDs) composite for simultaneous detection and speciation of divalent and trivalent iron ions[J]. Analytica Chimica Acta,2021,1 183: 338 973.
26 KAILASA S K,HA S,BAEK S H,et al. Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications[J]. Materials Science and Engineering:C,2019,98: 834.
27 CHANG D,ZHAO Z H,SHI L H,et al. Lysosome-targeted carbon dots for colorimetric and fluorescent dual mode detection of iron ion,in vitro and in vivo imaging[J]. Talanta,2021,232: 122 423.
28 DU Y C,LI Y X,LIU Y L,et al. Stalk-derived carbon dots as nanosensors for Fe3+ ions detection and biological cell imaging[J]. Frontiers in Bioengineering and Biotechnology,2023,11: 1 187 632.
29 ZHU W S,GAO X F,YU X K,et al. Screening of multifunctional fruit carbon dots for fluorescent labeling and sensing in living immune cells and zebrafishes[J]. Microchimica Acta,2022,189(6): 223.
30 WANG Y,ZHANG L,HAN X Y,et al. Fluorescent probe for mercury ion imaging analysis:Strategies and applications[J]. Chemical Engineering Journal,2021,406: 127 166.
31 LONG R Q,TANG C,LI T,et al. Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging[J]. Microchimica Acta,2020,187(5): 307.
32 WANG P C,YAN Y,ZHANG Y,et al. An improved synthesis of water-soluble dual fluorescence emission carbon dots from holly leaves for accurate detection of mercury ions in living cells[J]. International Journal of Nanomedicine,2021,16: 2 045.
33 LI D Y,WANG S P,AZAD F,et al. Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+[J]. Ecotoxicology and Environmental Safety,2020,190: 110 141.
34 FAN M M,PAN Z H,WANG C J,et al. Quantitative visual detection of mercury ions with ratiometric fluorescent test paper sensor[J]. Frontiers in Chemistry,2022,10: 859 379.
35 LI Q L,LI H,LI K X,et al. Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme[J]. Journal of Hazardous Materials,2023,441: 129 919.
36 YADAV S,CHOUDHARY N,SONPAL V,et al. Engineering excitation-independent turn-on fluorescent probe for mercury:Functionalized dendritic silica doped with red-emissive carbon dots towards simultaneous detection and remediation with biosensing application[J]. Chemical Engineering Journal,2023,471: 144 715.
37 LIU G L,FENG D Q,QIAN Y L,et al. Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods[J]. Talanta,2019,201: 90.
38 WANG X Q,GUO H,WU N,et al. A dual-emission fluorescence sensor constructed by encapsulating double carbon dots in zeolite imidazole frameworks for sensing Pb2+[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,615: 126 218.
39 PAYDAR S,FEIZI F,SHAMSIPUR M,et al. An ideal ratiometric fluorescent probe provided by the surface modification of carbon dots for the determination of Pb2+[J]. Sensors and Actuators B:Chemical,2022,369: 132 243.
40 YONG C,LEI Y,LIU Y H,et al. Mechanistic regulation of gram-scale synthesis of triple emission cyanobacteria-based carbon dots and visual ratiometric sensing applications[J]. Applied Surface Science,2023,623: 157 049.
41 GAO Y F,JIAO Y,ZHANG H L,et al. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor[J]. Journal of Materials Chemistry B,2019,7(36): 5 502.
42 WANG H Q,YANG L,CHU S Y,et al. Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device[J]. Analytical Chemistry,2019,91(14): 9 292.
43 OLORUNYOMI J F,WHITE J F,GENGENBACH T R,et al. Fabrication of a reusable carbon dot/gold nanoparticle/metal-organic framework film for fluorescence detection of lead ions in water[J]. ACS Applied Materials & Interfaces,2022,14(31): 35 755.
44 ZHANG W J,LI N,CHANG Q,et al. Making a cup of carbon dots for ratiometric and colorimetric fluorescent detection of Cu2+ ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586: 124 233.
45 JIA J,WANG H L,QUAN R X,et al. Fluorescent and smartphone-assisted colorimetric dual-mode sensor for Ag+ detection based on orange-red emitting carbon dots[J]. Materials Today Chemistry,2023,33: 101 730.
46 ADOTEY E K,AMOUEI TORKMAHALLEH M,TASTANOVA L,et al. Ultrasensitive fluorescent carbon dot sensor for quantification of soluble and insoluble Cr(VI) in particulate matter[J]. Journal of Hazardous Materials,2024,462: 132 671.
47 ANSI V A,RENUKA N K. Antagonistic interaction of Pb2+-Al3+ ion pair with sugar derived carbon dots:Visual monitoring of Al3+ ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,593: 124 632.
48 PUDZA M Y,ABIDIN Z Z,ABDUL-RASHID S,et al. Selective and simultaneous detection of cadmium,lead and copper by tapioca-derived carbon dot-modified electrode[J]. Environmental Science and Pollution Research,2020,27(12): 13 315.
49 YARUR F,MACAIRAN J R,NACCACHE R. Ratiometric detection of heavy metal ions using fluorescent carbon dots[J]. Environmental Science:Nano,2019,6(4): 1 121.
50 HE Y Y,WANG Y B,MAO G N,et al. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions[J]. Analytica Chimica Acta,2022,1191: 339 251.
51 XU J Y,WANG Y S,SUN L L,et al. Chitosan and κ-carrageenan-derived nitrogen and sulfur co-doped carbon dots "on-off-on" fluorescent probe for sequential detection of Fe3+ and ascorbic acid[J]. International Journal of Biological Macromolecules,2021,191: 1 221.
52 PANG L F,WU H,FU M J,et al. Red emissive boron and nitrogen co-doped "on-off-on" carbon dots for detecting and imaging of mercury(II) and biothiols[J]. Microchimica Acta,2019,186(11): 708.
53 LIU Y L,ZHOU P H,WU Y L,et al. Fast and efficient "on-off-on" fluorescent sensor from N-doped carbon dots for detection of mercury and iodine ions in environmental water[J]. Science of The Total Environment,2022,827: 154 357.
54 AHMED F,IQBAL S,ZHAO L,et al. "ON-OFF-ON" fluorescence switches based on N,S-doped carbon dots:Facile hydrothermal growth,selective detection of Hg2+,and as a reversive probe for guanine[J]. Analytica Chimica Acta,2021,1 183: 338 977.
55 ZHANG J H,WANG J,OUYANG F J,et al. A smartphone-integrated portable platform based on polychromatic ratiometric fluorescent paper sensors for visual quantitative determination of norfloxacin[J]. Analytica Chimica Acta,2023,1 279: 341 837.
56 SONG Y,XIE R Y,TIAN M M,et al. Controllable synthesis of bifunctional magnetic carbon dots for rapid fluorescent detection and reversible removal of Hg2+[J]. Journal of Hazardous Materials,2023,457: 131 683.
57 GUO X,XU D,YUAN H M,et al. A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals[J]. Journal of Materials Chemistry A,2019,7(47): 27 081.
58 YANG X C,YANG Y L,XU M M,et al. Metal-ion-cross-linked nitrogen-doped carbon dot hydrogels for dual-spectral detection and extractable removal of divalent heavy metal ions[J]. ACS Applied Nano Materials,2021,4(12): 13 986.
59 DANG V D,GANGANBOINA A B,DOONG R-A. Bipyridine-and copper-functionalized N-doped carbon dots for fluorescence turn off-on detection of ciprofloxacin[J]. ACS Applied Materials & Interfaces,2020,12(29): 32 247.
60 CHENG S J,ZHANG J Q,LIU Y M,et al. One-step synthesis of N,S-doped carbon dots with orange emission and their application in tetracycline antibiotics,quercetin sensing,and cell imaging[J]. Microchimica Acta,2021,188(10): 325.
61 YUAN M D,AN J,ZHANG G X,et al. In-situ nitrogen-doped carbon dots for fluorescence sensing of tetracycline antibiotic[J]. Ceramics International,2022,48(3): 4 047.
62 WU S X,CHEN C,CHEN J H,et al. Construction of carbon dots/metal-organic framework composite for ratiometric sensing of norfloxacin[J]. Journal of Materials Chemistry C,2022,10(41): 15 508.
63 FU J L,ZHOU S,WU X D,et al. Down/up-conversion dual-mode ratiometric fluorescence imprinted sensor embedded with metal-organic frameworks for dual-channel multi-emission multiplexed visual detection of thiamphenicol[J]. Environmental Pollution,2022,309: 119 762.
64 ZHANG J N,LIU Y,CUI X Y,et al. A smartphone-integrated molecularly imprinted fluorescence sensor for visual detection of chlortetracycline based on N,P-codoped carbon dots decorated iron-based metal-organic frameworks[J]. Journal of Agricultural and Food Chemistry,2023,71(43): 16 303.
65 SHAHSHAHANIPOUR M,REZAEI B,ENSAFI A A,et al. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug[J]. Materials Science and Engineering:C,2019,98: 826.
66 LIU X Q,WANG T,LU Y,et al. Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin[J]. Sensors and Actuators B:Chemical,2019,289: 242.
67 JIA Y C,CHENG Z,WANG G H,et al. Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples[J]. Food Chemistry,2023,402: 134 245.
68 VIJEATA A,CHAUDHARY G R,CHAUDHARY S,et al. Label free dual-mode sensing platform for trace level monitoring of ciprofloxacin using bio-derived carbon dots and evaluation of its antioxidant and antimicrobial potential[J]. Microchimica Acta,2023,190(7): 258.
69 LADDHA H,YADAV P,SHARMA M,et al. Waste to value transformation:Converting carica papaya seeds into green fluorescent carbon dots for simultaneous selective detection and degradation of tetracycline hydrochloride in water[J]. Environmental Research,2023,227: 115 820.
70 ARKIN K,ZHENG Y X,BEI Y Y,et al. Construction of dual-channel ratio sensing platform and molecular logic gate for visual detection of oxytetracycline based on biomass carbon dots prepared from cherry tomatoes stalk[J]. Chemical Engineering Journal,2023,464: 142 552.
71 LI H Q,DENG R,TAVAKOLI H,et al. Ultrasensitive detection of acephate based on carbon quantum dot-mediated fluorescence inner filter effects[J]. The Analyst,2022,147(23): 5 462.
72 MAHMOUDI N,FATEMI F,RAHMANDOUST M,et al. Development of a carbon quantum dot-based sensor for the detection of acetylcholinesterase and the organophosphate pesticide[J]. Heliyon,2023,9(9):e19551.
73 LI X Y,CHEN C,XU F F,et al. Novel dual-emission sulfur quantum dot sensing platform for quantitative monitoring of pesticide 2,4-dichlorophenoxyacetic acid[J]. Talanta,2023,260: 124 639.
74 HAN Y,YANG W X,LUO X L,et al. Cu2+-triggered carbon dots with synchronous response of dual emission for ultrasensitive ratiometric fluorescence determination of thiophanate-methyl residues[J]. Journal of Agricultural and Food Chemistry,2019,67(45): 12 576.
75 QIN L L,GUO Y J,LI L F,et al. Ratiometric fluorescent sensor based on hydrogen-bond triggering the internal filter effect for enzyme-free and visual monitoring pesticide residues[J]. ACS Sustainable Chemistry & Engineering,2023,11(30): 11 032.
76 ZHAO L,BAI Y F,WEN Y Q,et al. Orange-fluorescence carbon dots employed for the quantitative analysis of silver ions and glyphosine through the off-on mode[J]. Analytical Methods,2022,14(42): 4 230.
77 YUAN X Y,JIANG W,WANG J,et al. High-performance multiporous imprinted microspheres based on N-doped carbon dots exfoliated from covalent organic framework for flonicamid optosensing[J]. ACS Applied Materials & Interfaces,2020,12(22): 25 150.
78 WU M,FAN Y J,LI J W,et al. Vinyl phosphate-functionalized,magnetic,molecularly-imprinted polymeric microspheres' enrichment and carbon dots' fluorescence-detection of organophosphorus pesticide residues[J]. Polymers,2019,11(11): 1 770.
79 ZHAO Y T,RUAN X F,SONG Y,et al. Smartphone-based dual-channel immunochromatographic test strip with polymer quantum dot labels for simultaneous detection of cypermethrin and 3-phenoxybenzoic acid[J]. Analytical Chemistry,2021,93(40): 13 658.
80 WANG Y,ZHU F,YIN L,et al. Ratiometric fluorescent detection of pesticide based on split aptamer and magnetic separation[J]. Sensors and Actuators B:Chemical,2022,367: 132 045.
81 NAIR R V,CHANDRAN P R,MOHAMED A P,et al. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate[J]. Analytica Chimica Acta,2021,1 181: 338 893.
82 LI C M,QIN Z J,WANG M N,et al. Manganese oxide doped carbon dots for temperature-responsive biosensing and target bioimaging[J]. Analytica Chimica Acta,2020,1 104: 125.
83 SUN J J,WANG Q,YANG J J,et al. 2,4-dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells[J]. Microchimica Acta,2019,186(7): 402.
84 LIU Q L,NIU X Y,ZHANG Y,et al. Carbon dots for lysosome targeting and imaging of lysosomal pH and Cys/Hcy in living cells[J]. Nanoscale,2020,12(24): 13 010.
85 XIE X X,PENG Z Q,WANG Z Q,et al. Monitoring biothiols dynamics in living cells by ratiometric fluorescent gold carbon dots[J]. Talanta,2020,218: 121 214.
86 ZHOU X C,LI L,WANG Y H,et al. Nanozyme inhibited sensor array for biothiol detection and disease discrimination based on metal ion-doped carbon dots[J]. Analytical Chemistry,2023,95(23): 8 906.
87 SANGUBOTLA R,KIM J. Fiber-optic biosensor based on the laccase immobilization on silica-functionalized fluorescent carbon dots for the detection of dopamine and multi-color imaging applications in neuroblastoma cells[J]. Materials Science and Engineering:C,2021,122: 111 916.
88 TANG X Y,LIU Y M,BAI X L,et al. Turn-on fluorescent probe for dopamine detection in solutions and live cells based on in situ formation of aminosilane-functionalized carbon dots[J]. Analytica Chimica Acta,2021,1157: 338 394.
89 TIWARI A,WALIA S,SHARMA S,et al. High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum[J]. Journal of Materials Chemistry B,2023,11(5): 1 029.
90 WEI S S,LIU B Q,SHI X Y,et al. Gadolinium (III) doped carbon dots as dual-mode sensor for the recognition of dopamine hydrochloride and glutamate enantiomers with logic gate operation[J]. Talanta,2023,252: 123 865.
91 LI J,LI X j,WENG R Q,et al. Glucose assay based on a fluorescent multi-hydroxyl carbon dots reversible assembly with phenylboronic acid brush grafted magnetic nanoparticles[J]. Sensors and Actuators B:Chemical,2020,304: 127 349.
92 LV W X,WANG X,WU J H,et al. pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring[J]. Chinese Chemical Letters,2019,30(9): 1 635.
93 ZHU X H,PANG X,ZHANG Y Y,et al. Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose[J]. Journal of Materials Chemistry B,2019,7(48): 7 729.
94 ROSSINI E L,MILANI M I,PEZZA H R. Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform[J]. Talanta,2019,201: 503.
95 ZHANG R L,LIU L,LI W,et al. Luminescent carbon dots with excellent peroxidase mimicking property for fluorometric and colorimetric detection of glucose[J]. Colloids and Surfaces B:Biointerfaces,2023,222: 113 125.
96 CHAO D Y,CHEN J X,DONG Q,et al. Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification,glucose detection,and two starch-based solid-state fluorescence materials[J]. Nano Research,2020,13(11): 3 012.
97 JIA Y,HU Y,LI Y P,et al. Boron doped carbon dots as a multifunctional fluorescent probe for sorbate and vitamin B12[J]. Microchimica Acta,2019,186(2): 84.
98 CARDOSO M A,DUARTE A J,GONçALVES H M R. Carbon dots as reactive nitrogen species nanosensors[J]. Analytica Chimica Acta,2022,1 202: 339 654.
99 LI F,CHEN J,WEN J Y,et al. Ratiometric fluorescence and colorimetric detection for uric acid using bifunctional carbon dots[J]. Sensors and Actuators B:Chemical,2022,369: 132 381.
100 ZHANG C C,ZHANG H,YU Y Y,et al. Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu(III) ion using carbon dots as reference[J]. Talanta,2019,197: 451.
101 YANG M,YAO J,SU B R,et al. "Three-in-one" platform based on Fe-CDs nanozyme for dual-mode/dual-target detection and NIR-assisted bacterial killing[J]. Journal of Materials Chemistry B,2023,11(25): 5 898.
102 XU Y,YU H M,CHUDAL L,et al. Striking luminescence phenomena of carbon dots and their applications as a double ratiometric fluorescence probes for H2S detection[J]. Materials Today Physics,2021,17: 100 328.
103 QI J R,HU M X,LI H X,et al. A novel method of synthesis of fluorescent carbon dots for supersensitive and selective detection of cancer markers[J]. Journal of Nanoscience and Nanotechnology,2018,18(12): 8 085.
104 BHARATHI G,LIN F R,LIU L W,et al. An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker[J]. Colloids and Surfaces B:Biointerfaces,2021,198: 111 458.
105 HAN C P,CHEN R Y,WU X Q,et al. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots[J]. Analytica Chimica Acta,2021,1 187: 339 160.
106 DEB A,NALKAR G R,CHOWDHURY D. Biogenic carbon dot-based fluorescence-mediated immunosensor for the detection of disease biomarker[J]. Analytica Chimica Acta,2023,1 242: 340 808.
107 SIDHU J S,SINGH A,GARG N,et al. Carbon dots as analytical tools for sensing of thioredoxin reductase and screening of cancer cells[J]. The Analyst,2018,143(8): 1 853.
108 BEHI M,NAFICY S,CHANDRAWATI R,et al. Nanoassembled peptide biosensors for rapid detection of matrilysin cancer biomarker[J]. Small,2020,16(16):e1905994.
109 ZHANG H,BA S,YANG Z Q,et al. Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker APE1 in living cells[J]. ACS Applied Materials & Interfaces,2020,12(12): 13 634.
110 LI L,SHI L H,JIA J,et al. Dual photoluminescence emission carbon dots for ratiometric fluorescent GSH sensing and cancer cell recognition[J]. ACS Applied Materials & Interfaces,2020,12(16): 18 250.
111 RAJALAKSHMI K,DENG T T,MUTHUSAMY S,et al. Prostate cancer biomarker citrate detection using triaminoguanidinium carbon dots,its applications in live cells and human urine samples[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,268: 120 622.
112 HE J H,CHENG Y Y,ZHANG Q Q,et al. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity[J]. Talanta,2020,219: 121 276.
113 WANG C H,ZHANG Y,TANG W,et al. Ultrasensitive,high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform[J]. Analytica Chimica Acta,2021,1 178: 338 791.
114 WANG Z X,DING S N. Duplex-immunoassay of ovarian cancer biomarker CA125 and HE4 based carbon dot decorated dendritic mesoporous silica nanoparticles[J]. The Analyst,2023,148(3): 683.

來源:化學分析計量