您當前的位置:檢測資訊 > 科研開發(fā)
嘉峪檢測網(wǎng) 2024-08-27 16:44
基于算法特性
1、人工智能技術(shù)
人工智能技術(shù)從發(fā)展驅(qū)動要素角度是基于模型/數(shù)據(jù)和算力的算法,其中:
模型/數(shù)據(jù)是人工智能技術(shù)的基礎(chǔ),
算力是人工智能技術(shù)的保證,
算法是人工智能技術(shù)的核心。
由于算力所用計算資源本身不屬于監(jiān)管對象,計算資源的監(jiān)管要求取決于其所屬的計算平臺類型。
2、安全有效性評價
故從監(jiān)管角度出發(fā),人工智能醫(yī)療器械安全有效性評價基于其預(yù)期用途、使用場景、核心功能,
——以算法特性為核心重點關(guān)注其泛化能力,
——以模型/數(shù)據(jù)為基礎(chǔ)重點關(guān)注其質(zhì)控情況,
——從風(fēng)險管理角度兼顧算力不足與失效的影響。
3、組合形式整體評價
人工智能算法的類型不同,其算法特性、適用場景也不同,評價重點亦有所側(cè)重;同時,不同類型的人工智能算法可組合使用,需結(jié)合各算法特性和算法組合形式進行整體評價。
因此,注冊申請人需結(jié)合人工智能醫(yī)療器械的預(yù)期用途、使用場景、核心功能選擇與之相適宜的人工智能算法或算法組合,基于算法特性并結(jié)合風(fēng)險管理開展相應(yīng)驗證與確認工作。
以深度學(xué)習(xí)為例,其是指通過訓(xùn)練具有多個隱層的神經(jīng)網(wǎng)絡(luò)而獲得輸入輸出映射關(guān)系的人工智能算法,亦是基于海量數(shù)據(jù)和高算力的黑盒算法,既可用于有監(jiān)督學(xué)習(xí)又可用于無監(jiān)督學(xué)習(xí)。因此,對于采用深度學(xué)習(xí)技術(shù)的人工智能醫(yī)療器械,基于其預(yù)期用途、使用場景、核心功能,重點關(guān)注其算法泛化能力、數(shù)據(jù)質(zhì)控、可解釋性等問題,同時,深度學(xué)習(xí)若與其他類型的人工智能算法組合使用,還需基于各算法特性重點關(guān)注算法組合的整體評價問題。
基于風(fēng)險導(dǎo)向
人工智能醫(yī)療器械的風(fēng)險水平亦可用軟件安全性級別進行表述,軟件安全性級別越高,其生存周期質(zhì)控要求越嚴格,注冊申報資料越詳盡,同時由于全新類型的潛在未知風(fēng)險多于成熟類型,故需結(jié)合成熟度予以綜合考慮,具體要求詳見醫(yī)療器械軟件指導(dǎo)原則。
基于預(yù)期用途、使用場景、核心功能判定
人工智能醫(yī)療器械的軟件安全性級別可基于產(chǎn)品的預(yù)期用途、使用場景、核心功能進行綜合判定,其中:
——預(yù)期用途主要考慮用途類型、重要程度、緊迫程度等因素,
——使用場景主要考慮使用場合、疾病特征、適用人群、目標用戶等因素,
——核心功能主要考慮功能類型、核心算法、輸入輸出、接口等因素。
通過風(fēng)險管理等級判定
亦可根據(jù)風(fēng)險管理所確定的風(fēng)險等級進行判定,軟件安全性級別與風(fēng)險等級的分級可以不同,但二者存在對應(yīng)關(guān)系,因此可根據(jù)風(fēng)險等級來判定軟件安全性級別,但應(yīng)在采取風(fēng)險控制措施之前進行判定。
人工智能醫(yī)療器械的主要風(fēng)險
從算法角度包括過擬合和欠擬合,其中:
—— 過擬合是指算法對于訓(xùn)練數(shù)據(jù)過度學(xué)習(xí)而將非普遍規(guī)律作為重要特征,
—— 欠擬合是算法對于訓(xùn)練數(shù)據(jù)學(xué)習(xí)不充分而遺漏重要特征,均會降低算法泛化能力。
從用途角度,輔助決策主要包括假陰性和假陽性,其中:
——假陰性即漏診,可能導(dǎo)致后續(xù)診療活動延誤,特別是要考慮快速進展疾病的診療活動延誤風(fēng)險,
—— 假陽性即誤診,可能導(dǎo)致后續(xù)不必要的診療活動;非輔助決策從算法設(shè)計目標能否得以實現(xiàn)角度,亦可參考輔助決策分為假陰性和假陽性。
進口人工智能醫(yī)療器械
進口人工智能醫(yī)療器械還需考慮中外差異風(fēng)險,如人種、流行病學(xué)特征、臨床診療規(guī)范等差異。
注冊申請人應(yīng)結(jié)合人工智能醫(yī)療器械的預(yù)期用途、使用場景、核心功能開展風(fēng)險管理活動,采取風(fēng)險控制措施將風(fēng)險降至可接受水平,并貫穿于人工智能醫(yī)療器械全生命周期過程。
全生命周期管控
注冊申請人應(yīng)結(jié)合質(zhì)量管理體系要求,參考軟件、人工智能相關(guān)標準和良好工程實踐,建立人工智能醫(yī)療器械生存周期過程,開展與軟件安全性級別相匹配的產(chǎn)品質(zhì)量保證工作,將風(fēng)險管理、可追溯分析貫穿于生存周期全程,形成記錄以供體系核查。
上市前開展充分、適宜、有效的驗證與確認活動,保證算法泛化能力滿足用戶需求,識別可預(yù)見風(fēng)險并將其降至可接受水平,明確產(chǎn)品使用限制(含技術(shù)限制,下同)和必要警示提示信息。
上市后持續(xù)開展算法泛化能力研究,同時結(jié)合用戶投訴、不良事件和召回等情況識別前期未預(yù)見的風(fēng)險,并采取有效的風(fēng)險控制措施將風(fēng)險降至可接受水平。
此外,根據(jù)產(chǎn)品更新需求,經(jīng)評估后實施更新活動,開展與之相適宜的驗證與確認活動,保證算法泛化能力持續(xù)滿足用戶需求。

來源:Internet