您當(dāng)前的位置:檢測資訊 > 科研開發(fā)
嘉峪檢測網(wǎng) 2025-03-18 18:04
近期,隨著 AI 技術(shù)迭代加速,人工智能醫(yī)療器械正成為醫(yī)療產(chǎn)業(yè)破局關(guān)鍵。人工智能醫(yī)療器械的研發(fā)與落地正成為焦點。那么本期文章就跟大家分享一下人工智能醫(yī)療器械的一些相關(guān)細(xì)則。
基于算法特性
人工智能技術(shù)從發(fā)展驅(qū)動要素角度是基于模型/數(shù)據(jù)和算力的算法,其中模型/數(shù)據(jù)是人工智能技術(shù)的基礎(chǔ),算力是人工智能技術(shù)的保證,算法是人工智能技術(shù)的核心。
由于算力所用計算資源本身不屬于監(jiān)管對象,計算資源的監(jiān)管要求取決于其所屬的計算平臺類型。故從監(jiān)管角度出發(fā),人工智能醫(yī)療器械安全有效性評價基于其預(yù)期用途、使用場景、核心功能,以算法特性為核心重點關(guān)注其泛化能力,以模型/數(shù)據(jù)為基礎(chǔ)重點關(guān)注其質(zhì)控情況,同時從風(fēng)險管理角度兼顧算力不足與失效的影響。
人工智能算法的類型不同,其算法特性、適用場景也不同,評價重點亦有所側(cè)重;同時,不同類型的人工智能算法可組合使用,需結(jié)合各算法特性和算法組合形式進行整體評價。因此,注冊申請人需結(jié)合人工智能醫(yī)療器械的預(yù)期用途、使用場景、核心功能選擇與之相適宜的人工智能算法或算法組合,基于算法特性并結(jié)合風(fēng)險管理開展相應(yīng)驗證與確認(rèn)工作。
風(fēng)險導(dǎo)向
人工智能醫(yī)療器械的風(fēng)險水平亦可用軟件安全性級別進行表述,軟件安全性級別越高,其生存周期質(zhì)控要求越嚴(yán)格,注冊申報資料越詳盡,同時由于全新類型的潛在未知風(fēng)險多于成熟類型,故需結(jié)合成熟度予以綜合考慮,具體要求詳見醫(yī)療器械軟件指導(dǎo)原則。
人工智能醫(yī)療器械的軟件安全性級別可基于產(chǎn)品的預(yù)期用途、使用場景、核心功能進行綜合判定,其中預(yù)期用途主要考慮用途類型、重要程度、緊迫程度等因素,使用場景主要考慮使用場合、疾病特征、適用人群、目標(biāo)用戶等因素,核心功能主要考慮功能類型、核心算法、輸入輸出、接口等因素。亦可根據(jù)風(fēng)險管理所確定的風(fēng)險等級進行判定,軟件安全性級別與風(fēng)險等級的分級可以不同,但二者存在對應(yīng)關(guān)系,因此可根據(jù)風(fēng)險等級來判定軟件安全性級別,但應(yīng)在采取風(fēng)險控制措施之前進行判定。
人工智能醫(yī)療器械的主要風(fēng)險從算法角度包括過擬合和欠擬合,其中過擬合是指算法對于訓(xùn)練數(shù)據(jù)過度學(xué)習(xí)而將非普遍規(guī)律作為重要特征,欠擬合是算法對于訓(xùn)練數(shù)據(jù)學(xué)習(xí)不充分而遺漏重要特征,均會降低算法泛化能力。從用途角度,輔助決策主要包括假陰性和假陽性,其中假陰性即漏診,可能導(dǎo)致后續(xù)診療活動延誤,特別是要考慮快速進展疾病的診療活動延誤風(fēng)險,而假陽性即誤診,可能導(dǎo)致后續(xù)不必要的診療活動;非輔助決策從算法設(shè)計目標(biāo)能否得以實現(xiàn)角度,亦可參考輔助決策分為假陰性和假陽性。此外,進口人工智能醫(yī)療器械還需考慮中外差異風(fēng)險,如人種、流行病學(xué)特征、臨床診療規(guī)范等差異。
算法研究資料
一.算法訓(xùn)練
依據(jù)適用人群、數(shù)據(jù)來源機構(gòu)、采集設(shè)備、樣本類型等因素,提供訓(xùn)練集、調(diào)優(yōu)集(若有)關(guān)于疾病構(gòu)成的數(shù)據(jù)分布情況。明確算法訓(xùn)練所用的評估指標(biāo)、訓(xùn)練方式、訓(xùn)練目標(biāo)、調(diào)優(yōu)方式(若有),提供大鵬曲線或混淆矩陣等證據(jù)證明訓(xùn)練目標(biāo)滿足醫(yī)療要求,提供訓(xùn)練數(shù)據(jù)量-評估指標(biāo)曲線等證據(jù)以證實算法訓(xùn)練的充分性和有效性。
二.算法驗證與確認(rèn)
依據(jù)適用人群、數(shù)據(jù)來源機構(gòu)、采集設(shè)備、樣本類型等因素,提供測試集關(guān)于疾病構(gòu)成的數(shù)據(jù)分布情況。
提供假陰性與假陽性、重復(fù)性與再現(xiàn)性、魯棒性/健壯性、實時性等適用指標(biāo)的算法性能評估結(jié)果,以證明算法性能滿足算法設(shè)計目標(biāo)。
若使用第三方數(shù)據(jù)庫開展算法性能評估,提供第三方數(shù)據(jù)庫的基本信息(如名稱、創(chuàng)建者、數(shù)據(jù)總量等)和使用情況(如測試數(shù)據(jù)樣本量、評估指標(biāo)、評估結(jié)果等)。若適用,提供算法性能影響因素分析報告,明確影響算法性能的主要因素及其影響程度,以及產(chǎn)品使用限制和必要警示提示信息。若適用,提供壓力測試、對抗測試等測試報告。若未開展相應(yīng)測試或測試結(jié)果不佳,均需明確產(chǎn)品使用限制和必要警示提示信息。
若基于測評數(shù)據(jù)庫進行算法確認(rèn),提供測評數(shù)據(jù)庫的基本信息(如名稱、創(chuàng)建者、數(shù)據(jù)總量等)、評估情況(如評估方法、評估指標(biāo)、評估結(jié)果等)、使用情況(如評估指標(biāo)、評估結(jié)果等)。若基于臨床評價方式進行算法確認(rèn),指向臨床評價資料即可。
提供上述各類測試場景(含臨床評價)下的算法性能評估結(jié)果比較分析報告,明確產(chǎn)品使用限制和必要警示提示信息。
三.算法可追溯性分析
提供算法可追溯性分析報告,即追溯算法需求、算法設(shè)計、源代碼(明確軟件單元名稱即可)、算法測試、算法風(fēng)險管理的關(guān)系表。
若無單獨文檔可提供軟件可追溯性分析報告,并注明算法可追溯性分析所在位置。
導(dǎo)則及審評要點匯總
1.人工智能醫(yī)用軟件產(chǎn)品分類界定指導(dǎo)原則
2.人工智能醫(yī)療器械注冊審查指導(dǎo)原則
3.醫(yī)療器械軟件注冊審查指導(dǎo)原則
4.影像超聲人工智能軟件(流程優(yōu)化類功能)技術(shù)審評要點
5.病理圖像人工智能分析軟件性能評價審評要點
6.病理圖像人工智能分析軟件臨床評價審評要點
7.血液病流式細(xì)胞學(xué)人工智能分析軟件性能評價審評要點
8.磁共振成像系統(tǒng)人工智能軟件功能審評要點

來源:諾沃蘭CMDRA