您當(dāng)前的位置:檢測(cè)資訊 > 法規(guī)標(biāo)準(zhǔn)
嘉峪檢測(cè)網(wǎng) 2025-11-28 22:06
摘 要: 綜述了地質(zhì)樣品中有機(jī)磷農(nóng)藥的樣品處理技術(shù)和殘留檢測(cè)方法。比較了不同樣品處理技術(shù)的原理及優(yōu)缺點(diǎn),介紹了在傳統(tǒng)方法的基礎(chǔ)上發(fā)展的新型吸附材料和QuEChERS方法的應(yīng)用。在儀器分析檢測(cè)方面,介紹了低成本和操作簡(jiǎn)便的電化學(xué)方法和有一定選擇性的色譜方法的應(yīng)用,在此基礎(chǔ)上總結(jié)了色譜-質(zhì)譜聯(lián)用技術(shù)在有機(jī)磷農(nóng)藥檢測(cè)中的普及,并展望了高分辨率、高質(zhì)量精度的四級(jí)桿質(zhì)譜技術(shù)在準(zhǔn)確識(shí)別目標(biāo)物中的應(yīng)用,以期為有機(jī)磷農(nóng)藥的殘留檢測(cè)環(huán)境安全監(jiān)控提供參考。
關(guān)鍵詞: 地質(zhì)樣品; 有機(jī)磷農(nóng)藥; 樣品處理; 檢測(cè)技術(shù); 研究進(jìn)展
有機(jī)磷農(nóng)藥(OPs)是由一個(gè)磷原子通過(guò)雙鍵與氧或硫原子連接以及一個(gè)通過(guò)單鍵與甲氧基(—OCH3)或乙氧基(—OCH2CH3)基團(tuán)連接而成的一類(lèi)磷酸酯類(lèi)化合物[1]。第一種有機(jī)磷農(nóng)藥問(wèn)世于1937年,焦磷酸四乙酯作為有機(jī)磷殺蟲(chóng)劑被開(kāi)發(fā)和使用[2]。OPs廣泛應(yīng)用于農(nóng)田、園藝、作物開(kāi)發(fā)、畜牧業(yè)中[3],保護(hù)動(dòng)植物免受病蟲(chóng)害的危害。然而,OPs的廣泛使用導(dǎo)致土壤、水和農(nóng)作物中存在微量殘留。由于OPs會(huì)抑制對(duì)大腦中樞和周?chē)窠?jīng)系統(tǒng)至關(guān)重要的乙酰膽堿酯酶(AChE)的活性,這種抑制會(huì)導(dǎo)致昆蟲(chóng)和哺乳動(dòng)物抽搐、癱瘓并最終死亡[4?5]。此外,殘留的OPs可能導(dǎo)致人體患糖尿病、慢性腎臟病、哮喘、白血病等,還會(huì)增加致癌風(fēng)險(xiǎn)[6?10]。國(guó)內(nèi)外嚴(yán)格規(guī)定OPs在農(nóng)業(yè)生產(chǎn)活動(dòng)和環(huán)境中的殘留限量,并不斷完善[11?13]。為保障農(nóng)業(yè)生產(chǎn)安全,降低公民患病風(fēng)險(xiǎn),開(kāi)展有機(jī)磷農(nóng)藥殘留檢測(cè)的研究工作十分必要。
筆者綜述了樣品處理和檢測(cè)技術(shù)在地質(zhì)樣品中有機(jī)磷農(nóng)藥分析中的應(yīng)用。介紹和比較了不同樣品處理方法和檢測(cè)技術(shù)的原理和優(yōu)缺點(diǎn),重點(diǎn)介紹了新型吸附材料和QuEChERS作為樣品處理技術(shù)的廣泛應(yīng)用,總結(jié)了靈敏、可靠的色譜-質(zhì)譜聯(lián)用技術(shù)在有機(jī)磷農(nóng)藥檢測(cè)中的逐漸普及,并對(duì)準(zhǔn)確識(shí)別和定量目標(biāo)物的高分辨率、高質(zhì)量精度質(zhì)譜技術(shù)進(jìn)行了展望,旨在為地質(zhì)樣品中有機(jī)磷農(nóng)藥的殘留檢測(cè)提供基礎(chǔ)技術(shù)參考。
1 樣品處理技術(shù)
1.1 液液萃取法
液液萃?。↙LE)法是使用較早且傳統(tǒng)的樣品處理方法,其原理是利用混合物各組分對(duì)特定溶劑具有不同的溶解度,進(jìn)而使各組分從混合物中分離出來(lái),并得到提純。高薇[14]開(kāi)展液液萃取結(jié)合氣相色譜法測(cè)定飲用水中4種有機(jī)磷農(nóng)藥殘留的方法。正己烷作為萃取劑,無(wú)水硫酸鈉作為脫水劑,飲用水樣品經(jīng)過(guò)處理后上機(jī)測(cè)定,方法檢出限為0.25~1.0 μg/L,在低、中、高3種濃度水平下的回收率為94.0%~108.0%。陳國(guó)清[15]利用正己烷萃取水樣,凈化后氮吹濃縮,上機(jī)測(cè)定。6種有機(jī)磷化合物的質(zhì)量濃度在0.1~1.0 μg/mL范圍內(nèi)與色譜峰面積表現(xiàn)出良好的線(xiàn)性關(guān)系,相關(guān)系數(shù)均為0.999,回收率為76%~104%。傳統(tǒng)的液液萃取,樣品處理過(guò)程冗長(zhǎng),有機(jī)溶劑消耗量大,對(duì)實(shí)驗(yàn)人員身體造成影響[16],逐漸被其他方法取代。
1.2 液相微萃取
液相微萃取(LPME)法是在使用溶劑量大的液液萃取基礎(chǔ)上,通過(guò)使用較小體積的溶劑顯著減少了溶劑的用量。濁點(diǎn)萃取、中空纖維液相微萃取、分散液相微萃取等作為常見(jiàn)的LPME在地質(zhì)樣品處理方法中應(yīng)用較多[17]。謝美儀等[18]選取聚乙二醇作為液相微萃取的萃取劑,正己烷和乙酸乙酯混合液(體積比為35∶65)作為反萃取劑,顯著減少了有機(jī)溶劑的使用量,運(yùn)用濁點(diǎn)萃取-氣相色譜法同時(shí)測(cè)定環(huán)境水樣和土壤中6種有機(jī)磷農(nóng)藥,加標(biāo)回收率為89.7%~109.9%,各分析物的相關(guān)系數(shù)均大于0.99。SALVA-TIERRA STAMP等[19]使用多孔聚丙烯中空纖維的液相微萃取技術(shù),通過(guò)液相色譜-串聯(lián)質(zhì)譜法分析水樣中6種有機(jī)磷農(nóng)藥,回收率為80.6%~127.8%。ABI L等[20]開(kāi)發(fā)一種快速、簡(jiǎn)單、高效、高選擇性的基于表面漂浮有機(jī)液滴的空氣輔助液液微萃取方法,結(jié)合高效液相色譜-二極管陣列檢測(cè)器,提取、富集和測(cè)定環(huán)境水樣中的甲硫磷。在最佳實(shí)驗(yàn)參數(shù)條件下,目標(biāo)物回收率為71.8%~110.2%,所有樣品的相對(duì)標(biāo)準(zhǔn)偏差(RSD)小于8%(n=7),該方法在環(huán)境水樣中分析有機(jī)磷農(nóng)藥呈現(xiàn)較好的應(yīng)用前景。
1.3 固相萃取法
固相萃?。⊿PE)法的原理是將樣品以一定的流速通過(guò)填充有固相吸附劑的小柱,并通過(guò)選擇性洗脫或吸附的方式,對(duì)樣品內(nèi)的目標(biāo)物予以富集、純化以及分離等處理,從而實(shí)現(xiàn)分析物提煉、富集和凈化[21]。JALALZAEI等[22]利用合成的肟功能化的鈰基金屬有機(jī)骨架作為固相萃取吸附劑,凈化水樣中兩種有機(jī)磷農(nóng)藥,經(jīng)過(guò)乙腈洗脫后上機(jī)測(cè)定。結(jié)果表明,當(dāng)樣品處理環(huán)境pH為5.5,樣品流量為2 mL/min,乙腈體積為0.6 mL,流量為0.2 mL/min時(shí),兩種目標(biāo)物的加標(biāo)回收率為97.2%~98.2%。MARTINS等[23]利用含有聚合物Bond Elut Nexus吸附劑的SPE柱提取、凈化飲用水、湖水和工業(yè)廢水等水樣中的15種有機(jī)磷類(lèi)農(nóng)藥,采用甲醇-二氯甲烷(體積比為10∶90)混合溶劑洗脫,回收率為70%~120%,顯示出較好的準(zhǔn)確度。CASADO等[24]利用Oasis HLB柱快速凈化,結(jié)合液相色譜四極桿-Orbitrap高分辨串聯(lián)質(zhì)譜分析技術(shù),實(shí)現(xiàn)了水中包含有機(jī)磷類(lèi)農(nóng)藥的252種農(nóng)藥的高通量檢測(cè)。固相萃取法通過(guò)將大量樣品裝載到柱上,顯著提高了分析物濃度,具有較好的準(zhǔn)確度和靈敏度,但它非常耗時(shí),需要大量樣品,處理成本較高[25]。
1.4 固相微萃取法
早在1990年,固相微萃?。⊿PME)法作為一種重要的樣品處理技術(shù)被開(kāi)發(fā)使用[26]。該方法將采樣、預(yù)濃縮和萃取等處理環(huán)節(jié)集成到一個(gè)步驟中,并且捕獲的分析物可以直接引入到色譜系統(tǒng)等分析儀器中[27]。ABDOLI H等[28]設(shè)計(jì)和制造一種新的冷熱頂空固相微萃取裝置,用于同時(shí)冷卻纖維和蒸發(fā)樣品,并從土壤中提取毒死蜱,在溫度分別為-10 ℃和70 ℃,加水體積為20 μL,提取時(shí)間為15 min的條件下,5次重復(fù)實(shí)驗(yàn)的RSD為3.94%~6.51%,所制備的纖維性能穩(wěn)定,可多次使用。BAGHERI等[29]開(kāi)發(fā)了一種新型固相微萃取纖維涂層,采用鋅基金屬有機(jī)骨架和納米復(fù)合材料,并將其用于從環(huán)境水和土壤樣品中提取4種有機(jī)磷農(nóng)藥,隨后進(jìn)行上機(jī)檢測(cè)。在優(yōu)化條件下,回收率為88%~108%,測(cè)定結(jié)果的RSD為5.9%~10.1%(n=5)。DO CARMO等[30]將DVB/Car/PDMS纖維涂層通過(guò)直接浸沒(méi)模式(DI-SPME)進(jìn)行簡(jiǎn)單、無(wú)溶劑萃取,以城市飲用水為實(shí)際樣品,結(jié)合氣相色譜-質(zhì)譜法對(duì)其中4種有機(jī)磷農(nóng)藥進(jìn)行檢測(cè),在3個(gè)加標(biāo)水平下的回收率為70.0%~123.3%。相比固相萃取法,固相微萃取法樣品消耗量低且有機(jī)溶劑的使用量少,但是對(duì)于低揮發(fā)性有機(jī)化合物,存在萃取時(shí)間長(zhǎng)且重現(xiàn)性不穩(wěn)定的問(wèn)題。
1.5 QuEChERS法
基于QuEChERS原則的樣品處理技術(shù)由ANA-STASSIADES等人開(kāi)發(fā),是多殘留分析的傳統(tǒng)萃取方法的簡(jiǎn)化版本,現(xiàn)已廣泛應(yīng)用于生物、農(nóng)產(chǎn)品基質(zhì)中的大規(guī)模殘留分析,近年來(lái)也有少量報(bào)道應(yīng)用于地質(zhì)樣品中[31]。MAHDAVI等[32]采用1%乙酸乙腈提取土壤中有機(jī)磷農(nóng)藥,采用無(wú)水硫酸鎂脫水,選用PSA凈化。優(yōu)化條件后,3種有機(jī)磷農(nóng)藥的平均回收率為76.2%~110.2%,達(dá)到較好的準(zhǔn)確度。丁波濤等[33]以松林土壤為實(shí)際樣品,開(kāi)發(fā)了QuEChERS聯(lián)合氣相色譜串聯(lián)質(zhì)譜法分析3類(lèi)有機(jī)磷農(nóng)藥。土樣處理后置于樣品制備系統(tǒng)的整合管外管中,再加入氧化鋯瓷珠包、提取劑和QuEChERS提取包,進(jìn)行自動(dòng)提取、凈化,實(shí)現(xiàn)快速、自動(dòng)分析,各有機(jī)磷化合物的相關(guān)系數(shù)均大于0.999,回收率為86.2%~102%,測(cè)定結(jié)果的RSD為1.6%~4.2%(n=5),該方法有較好的準(zhǔn)確度和精密度。
1.6 其他樣品處理技術(shù)
袁寧等[34]建立了基于銪離子-四環(huán)素-草甘膦熒光增強(qiáng)體系結(jié)合分子印跡固相萃取測(cè)定地質(zhì)樣品中草甘膦殘留量的方法。以正硅酸乙酯為溶膠-凝膠功能單體,制備草甘膦分子印跡固相萃取膜,用于環(huán)境水和土壤樣品的處理。經(jīng)測(cè)定,草甘膦的回收率為101%。陳雨瑩等[35]將首次合成的鐵鈷鎳三元氧化物復(fù)合材料(ICNTO)作為固相萃取過(guò)程中的萃取材料,分離、富集水體中的5種有機(jī)磷農(nóng)藥,大大增強(qiáng)對(duì)目標(biāo)物的吸附能力。各分析物在不同加標(biāo)水平下的回收率為71.6%~121.7%,測(cè)定結(jié)果的RSD為1.6%~10.2%(n=5)。ASADI等[36]采用磁性氧化石墨烯/磷酸鑭納米復(fù)合材料作為水樣中毒死蜱的磁分散固相萃取的吸附劑,經(jīng)氣相色譜-電子捕獲檢測(cè)器測(cè)定,在最佳萃取時(shí)間、吸附劑用量、樣品pH值、鹽用量以及解吸時(shí)間下,毒死蜱的回收率為78%~120%,相關(guān)系數(shù)均大于0.997。
2 儀器分析檢測(cè)技術(shù)
2.1 氣相色譜法
氣相色譜(GC)法適用于熱穩(wěn)定性好、易揮發(fā)物質(zhì)的分析[37]。成樹(shù)森[38]以地表水為實(shí)際樣品,利用毛細(xì)管柱氣相色譜法對(duì)6種有機(jī)磷農(nóng)藥進(jìn)行分析,質(zhì)量濃度在在0.1~1.0 mg/L范圍內(nèi)色譜峰面積線(xiàn)性關(guān)系良好,相關(guān)系數(shù)均大于0.995,回收率為83%~115%。溫韜[39]采用全自動(dòng)固相萃取作為樣品處理方法,土壤經(jīng)丙酮提取后,提取液注入全自動(dòng)固相萃取儀,在HLB固相萃取柱中凈化、富集后上GC-FPD測(cè)定。結(jié)果表明,3種目標(biāo)物檢出限為0.005~0.012 mg/kg,加標(biāo)回收率為86%~91.5%,測(cè)定結(jié)果的RSD均小于5.0%(n=6)。傳統(tǒng)的氣相色譜存在不能準(zhǔn)確定性待測(cè)組分的問(wèn)題,而且有機(jī)磷農(nóng)藥極性較強(qiáng),難以做到精準(zhǔn)定量分析。
2.2 液相色譜法
與GC法相比,液相色譜(LC)法將流動(dòng)相從氣體改為液體。在此過(guò)程中,目標(biāo)物與流動(dòng)相一起通過(guò)輸液系統(tǒng)進(jìn)入裝有特定固定相的色譜柱,各化合物依據(jù)其極性差異在柱內(nèi)進(jìn)行分離,并在檢測(cè)器中轉(zhuǎn)化為電信號(hào)進(jìn)行定量分析。該方法能夠檢測(cè)熱不穩(wěn)定性化合物[40]。HASANUZZAMAN等[41]通過(guò)高效液相色譜(HPLC)法分析水樣中3種有機(jī)磷農(nóng)藥殘留,在不同加標(biāo)水平下,各化合物回收率為86.32%~95.49%。ZHANG等[42]采用濁點(diǎn)萃取法將分析物有效萃取到分離的表面活性劑富集相中并高度濃縮,無(wú)需進(jìn)一步凈化或蒸發(fā)樣品,直接進(jìn)行HPLC分析。最終水樣和土壤樣品中2種有機(jī)磷化合物回收率為83.2%~100.6%,測(cè)定結(jié)果的RSD為0.9%~4.1%(n=3)。
2.3 氣相色譜-質(zhì)譜法
氣相色譜-質(zhì)譜(GC-MS)法不僅具備氣相色譜高分離效率高的優(yōu)勢(shì),同時(shí)與質(zhì)譜法的準(zhǔn)確鑒定相匹配,集定性、定量檢測(cè)于一體,因此在農(nóng)藥殘留分析中應(yīng)用非常廣泛[43]。MOINFAR等[44]建立GC-MS法測(cè)定河水中5種有機(jī)磷農(nóng)藥,5種分析物檢出限為0.3~1.0 μg/L,在低中高3種濃度水平下,回收率為83%~105%,測(cè)定結(jié)果的RSD小于6.0%(n=6)。ZAMAN等[45]采用GC-MS法測(cè)定南極洲巖石和土等地質(zhì)樣品中的3種有機(jī)磷農(nóng)藥,樣品經(jīng)噴霧輔助提取后上機(jī)測(cè)定,回收率為94.9%~114.1%。ABDEL GHANI等[46]開(kāi)發(fā)一種基于QuEChERS的小型液-液萃取處理技術(shù),結(jié)合準(zhǔn)確度高的GC-MS法,以地表水樣為樣品,測(cè)定其中4種有機(jī)磷農(nóng)藥殘留,加標(biāo)回收率為85.3%~107%。
2.4 液相色譜-串聯(lián)質(zhì)譜法
盡管GC-MS法可檢測(cè)大部分有機(jī)磷農(nóng)藥,但對(duì)于極性較強(qiáng)、難揮發(fā)或熱不穩(wěn)定性的大分子有機(jī)化合物,可以選擇液相色譜-串聯(lián)質(zhì)譜(LC-MS/MS)法彌補(bǔ)GC-MS法的不足。DRIMAROPOULOU等[47]采用UPLC-MS/MS同時(shí)分析飲用水中包括5種有機(jī)磷農(nóng)藥的253種農(nóng)藥,樣品經(jīng)SPE處理,3 mL甲醇-乙酸乙酯(體積比為70∶30)洗脫,最終目標(biāo)物的平均回收率為70%~110%。KHARBOUCHE等[48]建立UPLC-MS/MS法同時(shí)測(cè)定河水樣品中4種有機(jī)磷農(nóng)藥,樣品經(jīng)含有MSU-1硅基吸附劑的小柱代替Oasis HLB柱萃取、凈化,最終各物質(zhì)的加標(biāo)回收率為86.7%~107.3%,測(cè)定結(jié)果的RSD均小于15.7%(n=5)。TAN等[49]基于QuEChERS技術(shù),處理海南島熱帶河流域的農(nóng)田表土壤,結(jié)合UPLC-MS/MS技術(shù)對(duì)其中包含毒死蜱和辛硫磷在內(nèi)的41種農(nóng)藥殘留分析。結(jié)果表明,各目標(biāo)農(nóng)藥的平均回收率為76.8%~108.2%,測(cè)定結(jié)果的日內(nèi)RSD為1.7%~10.9%,日間RSD為2.4%~11.8%(n=3),準(zhǔn)確度和精密度良好。
2.5 電化學(xué)法
與色譜、質(zhì)譜等方法相比,電化學(xué)技術(shù)因其成本低、操作簡(jiǎn)便、響應(yīng)快速等優(yōu)點(diǎn)而成為一種有前景的替代方法。由于有機(jī)磷農(nóng)藥結(jié)構(gòu)中含有可以表現(xiàn)出良好的電化學(xué)活性的基團(tuán),因此可通過(guò)電化學(xué)法實(shí)現(xiàn)便捷快速的檢測(cè)。XIE等[50]通過(guò)煅燒Cu (II)/Ce (III)金屬有機(jī)骨架制備納米結(jié)構(gòu)銅-氧化鈰(CuO-CeO2)復(fù)合材料構(gòu)建為馬拉硫磷的非酶電化學(xué)傳感器,應(yīng)用于湖水中目標(biāo)物的測(cè)定,多空納米結(jié)構(gòu)大大提高有效比表面積,有利于馬拉硫磷的吸附。實(shí)驗(yàn)結(jié)果表明,回收率為96.2%~103.5%,測(cè)定結(jié)果的RSD小于5%(n=3),顯示出良好的重現(xiàn)性。AGHAIE等[51]合成制作的石墨烯基NiFe雙金屬磷硫化物納米復(fù)合材料首次被用作增強(qiáng)乙基對(duì)氧磷電化學(xué)信號(hào)的新型電催化改性劑,開(kāi)發(fā)出的非酶電化學(xué)傳感器用于溶出伏安法對(duì)水樣中乙基對(duì)氧磷的檢測(cè),回收率為98%~102.3%。YUE等[52]通過(guò)膦酸基團(tuán)作為橋?qū)r (IV)固定在玻碳電極上,成功實(shí)現(xiàn)了水樣中甲基對(duì)硫磷的電化學(xué)快速測(cè)定,平均回收率為99.9%~102.2%。
3 結(jié)論與展望
農(nóng)藥的施用安全問(wèn)題一直是民眾關(guān)注的熱點(diǎn)話(huà)題,有機(jī)磷農(nóng)藥因其種類(lèi)多、使用量大、毒性強(qiáng)等特點(diǎn),受到社會(huì)各界的廣泛特別關(guān)注。近年來(lái),國(guó)內(nèi)外研究人員針對(duì)樣品處理和檢測(cè)分析過(guò)程做了大量的研究工作,并取得顯著進(jìn)展。在樣品處理方法上,由于地質(zhì)樣品介質(zhì)的不同,方法選擇有所區(qū)別,水樣品多采用固相萃取、液相萃?。煌寥罉悠吠ǔMㄟ^(guò)QuEChERS、固相萃取進(jìn)行處理。相比有些方法提取劑消耗量大的缺點(diǎn),微萃取技術(shù)大大減少了有機(jī)溶劑的使用量,符合環(huán)境友好型理念,也被應(yīng)用于地質(zhì)樣品中有機(jī)磷農(nóng)藥的提取,另外合成的高選擇性的固相聚合物和磁性納米材料作為新興技術(shù)已逐漸應(yīng)用到地質(zhì)樣品中有機(jī)磷農(nóng)藥的樣品處理過(guò)程中。與之匹配的檢測(cè)技術(shù)主要有低成本和操作簡(jiǎn)便的電化學(xué)方法和選擇性好的色譜方法,在此基礎(chǔ)上,靈敏、準(zhǔn)確、可靠的色譜-質(zhì)譜聯(lián)用技術(shù)逐漸發(fā)展成地質(zhì)樣品中有機(jī)磷農(nóng)藥殘留檢測(cè)的主要手段,近年來(lái),隨著質(zhì)譜技術(shù)的不斷創(chuàng)新發(fā)展,高分辨率、高質(zhì)量精度的四級(jí)桿飛行時(shí)間質(zhì)譜(Q/TOF MS)和四極桿-靜電場(chǎng)軌道阱高分辨質(zhì)譜(Q/Orbitrap MS)技術(shù)在有機(jī)磷農(nóng)藥的殘留檢測(cè)領(lǐng)域發(fā)揮著重要作用,可以幫助研究人員準(zhǔn)確識(shí)別和定量目標(biāo)物,為環(huán)境保護(hù)和治理提供科學(xué)依據(jù)。未來(lái),在這些技術(shù)的基礎(chǔ)上應(yīng)進(jìn)一步完善,繼續(xù)探索能夠提高檢測(cè)速度、降低成本的技術(shù),為地質(zhì)樣品中有機(jī)磷農(nóng)藥殘留的準(zhǔn)確、高效檢測(cè)提供有力支持。同時(shí),更好地理解有機(jī)磷農(nóng)藥的環(huán)境行為和生態(tài)影響,對(duì)于保障環(huán)境和人類(lèi)健康安全具有重要意義。
參考文獻(xiàn)
1 ELKHATIB E A,HAMADEEN H M. Nanomaterials for removal of organophosphorus pesticides from wastewater[J]. Agricultural and Environmental Nanotechnology,2023: 583.
2 LI Hua,DANG Fanglin,YU Lumengfei,et al. Soil residues and crop accumulation of organophosphorus and pyrethroid pesticides in agricultural fields in Shaanxi,China[J]. Journal of Soils and Sediments,2024,24(7): 2 713.
3 MOSTAFALOU S,ABDOLLAHI M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides[J]. Archives of Toxicology,2023,97: 3 037.
4 張杰,許家勝,劉連利.氣相色譜法快速測(cè)定蔬菜水果中甲拌磷、甲基對(duì)硫磷殘留量[J].科學(xué)技術(shù)與工程,2011,11(13): 3 049.
ZHANG Jie,XU Jiasheng,LIU Lianli. Rapid determination of phorate and methyl parathion residues in vegetables and fruits by gas chromatography[J]. Science Technology and Engineering,2011,11(13): 3 049.
5 ZHANG Zhikun,ZHANG Liu,HAN Ping,et al. A luminescent probe based on terbium-based metal-organic frameworks for organophosphorus pesticides detection[J]. Microchimica Acta,2022,189(11): 438.
6 CZAJKAA M,MATYSIAK-KUCHAREKA M,JOD?OWSKA-J?DRYCHB B,et al. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes[J]. Environmental Research,2019,178: 108 685.
7 JIA Lyu,GUO Lijuan,GU Yue,et al. National temporal trend for organophosphate pesticide DDT exposure and associations with chronic kidney disease using age-adapted eGFR model[J]. Environment International,2022,169: 107 499.
8 SHAFFO F C,GRODZKI A C,F(xiàn)RYER A D,et al. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma[J]. American Journal of Physiology-Cell Physiology,2018,315(4): 485.
9 MADRIGAL J M,JONES R R,GUNIER R B,et al. Residential exposure to carbamate,organophosphate,and pyrethroid insecticides in house dust and risk of childhood acute lymphoblastic leukemia[J]. Environmental Research,2021,201: 111 501.
10 ZHANG Nan,ZHU Lianhua,ZHANG Ruizhi,et al. Evaluation of toxicological effects of organophosphorus pesticide metabolites on human HepG2 cells[J]. Environmental Toxicology and Pharma-cology,2021,88: 103 741.
11 SHAMIM M,ZEYNAB T,ABOOALFAZL A. Investigating organophosphorus pesticides in dates from Khesht City (Iran):Impact of washing and assessment of the health risks[J]. Applied Food Research,2024,4(2): 100 535.
12 劉潔,鹿文慧,崔榮,等.固相萃取-毛細(xì)管液相色譜測(cè)定食品和水樣中有機(jī)磷和氨基甲酸酯類(lèi)殺蟲(chóng)劑殘留[J].色譜,2018,36(1): 30.
LIU Jie,LU Wenhui,CUI Rong,et al. Determination of organophosphorus and carbamate insecticide residues in food and water samples by solid phase extraction coupled with capillary liquid chromatography[J]. Chinese Journal of Chromatography,2018,36(1): 30.
13 BAHAMON-PINZON D,MOREIRA G,OBARE S,et al. Development of a nanocopper-decorated laser-scribed sensor for organophosphorus pesticide monitoring in aqueous samples[J]. Microchimica Acta,2022,189(7): 254.
14 高薇.液液萃取-氣相色譜法測(cè)定水中4種有機(jī)磷[J].供水技術(shù),2022,16(5): 47.
GAO Wei. Determination of four kinds of organic phosphorus in water by liquid-liquid extraction gas chromatography[J]. Water Technology,2022,16 (5): 47.
15 陳國(guó)清.液液萃取氣相色譜法測(cè)定水中6種有機(jī)磷農(nóng)藥[J].食品安全導(dǎo)刊,2023(16): 90.
CHEN Guoqing. Determination of six organophosphorus pesticides in water by liquid liquid extraction gas chromatography[J]. China Food Safety Magazine,2023(16): 90.
16 周宇齊,鐘旭,宋洲,等.小體積液液萃取-氣相色譜-三重四極桿串聯(lián)質(zhì)譜法測(cè)定地下水中32種半揮發(fā)性有機(jī)污染物[J].化學(xué)分析計(jì)量,2024,33(1): 27.
ZHOU Yuqi,ZHONG Xu,SONG Zhou,et al. Determination of 32 semi-volatile organic pollutants in groundwater by gas chromato-graphytriple quadrupole mass spectrometry with small volume liquid-liquid extraction[J]. Chemical Analysis and Meterage,2024,33(1): 27.
17 SALVATIERRA-STAMP V,CEBALLOS-MAGAÑA S G,PANO-FARIAS N S,et al. Hollow fiber liquid-phase microextraction combined with supercritical fluid chromatography coupled to mass spectrometry for multiclass emerging contaminant quantification in water samples[J]. Analytical and Bioanalytical Chemistry,2021,413: 2 467.
18 謝美儀,姜?jiǎng)?,劉煒婷,?濁點(diǎn)萃取-氣相色譜法同時(shí)測(cè)定6種有機(jī)磷農(nóng)藥[J].分析科學(xué)學(xué)報(bào),2021,37(5): 675.
XIE Meiyi,JIANG Xun,LIU Weiting,et al. Cloud point extraction for simultaneous determination of six organophosphorus pesticides in environmental samples using gas chromatography[J]. Journal of Analytical Science,2021,37(5): 675.
19 SALVATIERRA-STAMP V,MUÑIZ-VALENCIA R,JURADO J M,et al. Hollow fiber liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging contaminants in water samples[J]. Microchemical Journal,2018,140: 87.
20 ABI L,HABTAMU B,NEGUSSIE M,et al. A fast,simple and efficient surface floating organic droplet-based air-assisted liquid-liquid microextraction for simultaneous extraction of multiclass pesticides from environmental water,mineral water and soft drink samples by HPLC-DAD[J]. Microchemical Journal,2024,201: 110 650.
21 李峰.有機(jī)污染物在水體中的檢測(cè)應(yīng)用及前處理方法研究[J].科技資訊,2023,21(2): 99.
LI Feng. Study on the detection application of organic pollutants in water bodies and pretreatment methods[J]. Science & Technology Information,2023,21(2): 99.
22 JALALZAEI F,KHAJEH M,KARGAR-SHOUROKI F,et al. Oxime-functionalized cerium-based metal-organic framework for determination of two pesticides in water and biological samples by HPLC method[J]. Journal of Nanostructure in Chemistry,2024,14(1): 95.
23 MARTINS M L,DONATO F F,PRESTES O D,et al. Determination of pesticide residues and related compounds in water and industrial effluent by solid-phase extraction and gas chromatography coupled to triple quadrupole mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2013,405: 7 697.
24 CASADO J,SANTILLO D,JOHNSTON P. Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-orbitrap high resolution tandem mass spectrometry[J]. Analytica Chimica Acta,2018,1024: 1.
25 MOLINS-DELGADO D,GARCÍA-SILLERO D,SILVIA DÍAZ-CRUZ M,et al. On-line solid phase extraction-liquid chromato-graphy-tandem mass spectrometry for insect repellent residue analysis in surface waters using atmospheric pressure photoio-nization[J]. Journal of Chromatography A,2018,1544: 33.
26 FARAH A,BEHJAT D,GHOLAM H R. Development of solid-phase microextraction methods for determination of non-steroidal anti-inflammatory drugs[J]. Microchemical Journal,2025,208: 112 340.
27 JALILI V,BARKHORDARI A,GHIASVAND A. A compre-hensive look at solid-phase microextraction technique:a review of reviews[J]. Microchemical Journal,2020,152: 104 319.
28 ABDOLI H.,ALIZADEH K.,HASHEMI P,et al. A device for the simultaneous cooling of the fiber and the evaporated sample in the determination of pesticides from soil samples using fiber headspace solid-phase microextraction[J]. Journal of Analytical Chemistry,2024,79: 546.
29 BAGHERI H,AMANZADEH H,YAMINI Y,et al. A nano-composite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides[J]. Microchimica Acta,2018,185: 62.
30 DO CARMO S N,MENDES L D,CORAZZA G,et al. Determination of pesticides of different chemical classes in drinking water of the state of Santa Catarina (Brazil) using solid-phase microextraction coupled to chromatographic determinations[J]. Environmental Science and Pollution Research,2020,27: 43 870.
31 DE MASTRO F,COCOZZA C,TRAVERSA A,et al. Validation of a modified QuEChERS method for the extraction of multiple classes of pharmaceuticals from soils[J]. Chemical and Biological Technologies in Agriculture,2022,9: 49.
32 MAHDAVI V,HERIS M S,DASTRANJ M,et al. Assessment of pesticide residues in soils using a QuEChERS extraction procedure and LC-MS/MS[J]. Water,Air and Soil Pollution,2021,232: 159.
33 丁波濤,王素華,郭亮,等. QuEChERS樣品制備系統(tǒng)聯(lián)合氣相色譜-串聯(lián)質(zhì)譜法測(cè)定松林土壤中6種殺蟲(chóng)劑的殘留量[J].理化檢驗(yàn)-化學(xué)分冊(cè),2023,59(8): 953.
DING Botao,WANG Suhua,GUO Liang,et al. Determination of residues of six insecticides by gas chromatography tandem mass spectrometry combined with QuEChERS sample preparation system[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2023,59(8): 953.
34 袁寧,沈曉峰,全紅花,等.基于銪離子-四環(huán)素-草甘膦熒光增強(qiáng)體系結(jié)合分子印跡固相萃取測(cè)定環(huán)境樣品中草甘膦的殘留量[J].理化檢驗(yàn)-化學(xué)分冊(cè),2024,60(1): 15.
YUAN Ning,SHEN Xiaofeng,QUAN Honghua,et al. Determination of residue of glyphosate in environmental samples based on europium ion-tetracycline-glyphosate fluorescence enhancement system combined with molecular imprinting solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2024,60(1): 15.
35 陳雨瑩,王澤鵬,任維,等.鐵鈷鎳三元氧化物固相萃取結(jié)合氣相色譜-質(zhì)譜法檢測(cè)環(huán)境水樣中5種有機(jī)磷農(nóng)藥[J].分析科學(xué)學(xué)報(bào),2022,38(6): 670.
CHEN Yuying,WANG Zepeng,REN Wei,et al. Determination of five organophosphorus pesticides in environmental water samples by iron cobalt nickel ternary oxide solid phase extraction combined with gas chromatography-mass spectrometry[J]. Journal of Analytical Science,2022,38(6): 670.
36 ASADI M,SERESHTI H,RASHIDI NODEH H. Development of magnetic dispersive microsolid-phase extraction using lanthanum phosphate nanoparticles doped on magnetic graphene oxide as a highly selective adsorbent for pesticide residues analysis in water and fruit samples[J]. Research on Chemical Intermediates,2020,46: 2 789.
37 李秋萱,劉玲花,王學(xué)東,等.地下水中揮發(fā)性有機(jī)物的樣品預(yù)處理與分析檢測(cè)綜述[J].首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,43(1): 91.
LI Qiuxuan,LIU Linghua,WANG Xuedong,et al. Sample pretreatment and analysis detection of volatile organic compounds in groundwater[J]. Journal of Capital Normal University (Natural Science Edition),2022,43(1): 91.
38 成樹(shù)森.氣相色譜法檢測(cè)地表水中有機(jī)磷農(nóng)藥[J].品牌與標(biāo)準(zhǔn)化,2023(4): 82.
CHENG Shusen. Gas chromatography method for detection of organophosphorus pesticides in surface water[J]. Brand & Standardization,2023(4): 82.
39 溫韜.全自動(dòng)固相萃取-GC-FPD法檢測(cè)土壤中殘留的馬拉硫磷、甲基對(duì)硫磷和治螟磷[J].分析儀器,2020(2): 27.
WEN Tao. Determination of malathion,parathion methyl and fenitrophos in soil by SPE-GC-FPD[J]. Analytical Instrumen-tation,2020(2): 27.
40 繆宇騰,盧一辰,陸利霞,等.環(huán)境介質(zhì)中有機(jī)磷農(nóng)藥殘留檢測(cè)方法的研究與進(jìn)展[J].生物加工過(guò)程,2022,20(1): 95.
LIAO Yuteng,LU Yichen,LU Lixia,et al. Detection of organophosphorus pesticide residues in environmental matrices:a review[J]. Chinese Journal of Bioprocess Engineering,2022,20(1): 95.
41 HASANUZZAMAN M,RAHMAN M A,SALAM M A. Identification and quantification of pesticide residues in water samples of Dhamrai Upazila,Bangladesh[J]. Applied Water Science,2017,7: 2 681.
42 ZHANG Chao,WU Yanjiao,JIN Shefeng,et al. Analysis of chlorpyrifos and chlorpyrifos-methyl residues in multi-environ-mental media by cloud-point extraction and HPLC[J]. Analytical Methods,2013,5(12): 3 089.
43 陳翊,張玉,李正.水環(huán)境中有機(jī)氯農(nóng)藥殘留檢測(cè)方法研究進(jìn)展[J].中國(guó)衛(wèi)生檢驗(yàn)雜志,2018,28(10): 1 277.
CHEN Yi,ZHANG Yu,LI Zheng. Research progress on detection methods for organochlorine pesticide residues in water environment[J]. Chinese Journal of Health Laboratory Technology,2018,28(10): 1 277.
44 MOINFAR S,JAMIL L A,SAMI H Z. Determination of organophosphorus pesticides in juice and water by modified continuous sample drop flow microextraction combined with gas chromatography-mass spectrometry[J]. Food Analysis Methods,2020,13: 1 050.
45 ZAMAN B T,BOZYI?IT G D,?AYLAN M,et al. Implementation of simple and effective fine droplet formation-based spray-assisted liquid phase microextraction for the simultaneous determination of twenty-nine endocrine disruptor compounds and pesticides in rock,soil,water,moss,and feces samples from antarctica using gas chromatography-mass spectrometry[J]. Environmental Science and Pollution Research,2024,31(7): 10 920.
46 ABDEL GHANI S B,HANAFI A H. QuEChERS method combined with GC-MS for pesticide residues determination in water[J]. Journal of Analytical Chemistry,2016,71: 508.
47 DRIMAROPOULOU G,CHRISTOPHORIDIS C,ZACHARIS C K,et al. Chemometric optimization of spe for the determination of multiclass pesticides in portable water samples by UHPLC-MS/MS[J]. Bulletin of Environmental Contamination and Toxicology,2024,112: 48.
48 KHARBOUCHE L,GIL GARCÍA M D,LOZANO A,et al. Solid phase extraction of pesticides from environmental waters using an MSU-1 mesoporous material and determination by UPLC-MS/MS[J]. Talanta,2019,99: 612.
49 TAN Huadong,LI Qinfen,ZHANG Huijie,et al. Pesticide residues in agricultural topsoil from the Hainan tropical riverside basin:Determination,distribution,and relationships with planting patterns and surface water[J]. Science of The Total Environment,2020,722: 137 856.
50 XIE Yu,TU Xioalong,MA Xue,et al. A CuO-CeO2 composite prepared by calcination of a bimetallic metal-organic framework for use in an enzyme-free electrochemical inhibition assay for malathion[J]. Microchimica Acta,2019,186: 567.
51 AGHAIE A,KHANMOHAMMADI A,HAJIAN A,et al. Nonenzymatic electrochemical determination of paraoxon ethyl in water and fruits by graphene-based nife bimetallic phosphosulfide nanocomposite as a superior sensing layer[J]. Food Analysis Methods,2019,12: 1 545.
52 YUE Yuhua,JIANG Li,LI Zhen,et al. A glassy carbon electrode modified with a monolayer of zirconium(IV) phosphonate for sensing of methyl-parathion by square wave voltammetry[J]. Microchimica Acta,2019,186: 1.

來(lái)源:化學(xué)分析計(jì)量