中文字幕一级黄色A级片|免费特级毛片。性欧美日本|偷拍亚洲欧美1级片|成人黄色中文小说网|A级片视频在线观看|老司机网址在线观看|免费一级无码激情黄所|欧美三级片区精品网站999|日韩av超碰日本青青草成人|一区二区亚洲AV婷婷

您當(dāng)前的位置:檢測(cè)資訊 > 法規(guī)標(biāo)準(zhǔn)

EMA、FDA聯(lián)合發(fā)布《藥物研發(fā)中良好AI實(shí)踐指南》!

嘉峪檢測(cè)網(wǎng)        2026-01-15 13:46

1月14日晚,EMA和FDA聯(lián)合發(fā)布《藥物研發(fā)中AI良好實(shí)踐指導(dǎo)原則》,為藥物全生命周期中利用AI開展證據(jù)生成與監(jiān)測(cè)工作提供了通用性指導(dǎo)意見(jiàn)。核心涵蓋10項(xiàng)指導(dǎo)意見(jiàn)。
 
EMA、FDA聯(lián)合發(fā)布《藥物研發(fā)中良好AI實(shí)踐指南》!
 
Guiding principles of good AI practice in drug development
藥物研發(fā)中良好AI實(shí)踐指導(dǎo)原則
 
Artificial Intelligence (AI) has the potential to transform the way drugs (medicines) are developed and evaluated, ultimately improving healthcare. In this context, AI refers to system-level technologies used to generate or analyse evidence across the drug product life cycle, including nonclinical, clinical, post-marketing, and manufacturing phases.
人工智能(AI)有望改變藥物的研發(fā)和評(píng)估方式,最終改善醫(yī)療健康服務(wù)。在此背景下,AI指的是用于在藥品全生命周期中生成或分析證據(jù)的系統(tǒng)級(jí)技術(shù),這些階段包括非臨床、臨床、上市后以及生產(chǎn)階段。
 
Drugs are authorised based on demonstrated quality, efficacy and safety, and when their benefits outweigh their risks. As new technologies emerge, including AI, it is essential that their use reinforces these requirements for the benefit and safety of patients.
藥物的獲批需基于已證實(shí)的質(zhì)量、有效性和安全性,且其獲益需大于風(fēng)險(xiǎn)。隨著以AI為代表的新技術(shù)不斷涌現(xiàn),為了患者的利益和安全,這些技術(shù)的應(yīng)用必須強(qiáng)化上述要求。
 
The use of AI throughout the drug product life cycle has increased significantly in recent years. The complex and dynamic processes involved in developing, deploying, using, and maintaining AI technologies benefit from careful management throughout the drug product life cycle to ensure outputs are accurate and reliable.
近年來(lái),AI在藥品全生命周期中的應(yīng)用顯著增加。AI技術(shù)的開發(fā)、部署、使用和維護(hù)涉及復(fù)雜且動(dòng)態(tài)的流程,對(duì)這些流程在藥品全生命周期中進(jìn)行審慎管理,有助于確保其輸出結(jié)果準(zhǔn)確、可靠。
 
Among other innovations, AI technologies are anticipated to support a multi-faceted approach that promotes innovation, reduces time-to-market, strengthens regulatory excellence and pharmacovigilance, and decreases reliance on animal testing by improving the prediction of toxicity and efficacy in humans.
在諸多創(chuàng)新應(yīng)用中,AI技術(shù)有望助力形成一種多維度的方法:推動(dòng)創(chuàng)新、縮短產(chǎn)品上市時(shí)間、提升監(jiān)管效能與藥物警戒水平,同時(shí)通過(guò)提高對(duì)人體毒性和有效性的預(yù)測(cè)能力,減少對(duì)動(dòng)物實(shí)驗(yàn)的依賴。
 
This document outlines a common set of principles to inform, enhance, and promote the use of AI for generating evidence across all phases of the drug product life cycle.
本文件闡述了一套通用原則,旨在為AI在藥品全生命周期各階段生成證據(jù)的應(yīng)用提供指導(dǎo)、予以完善并推動(dòng)其發(fā)展。
 
These 10 guiding principles are intended to lay the foundation for developing good practice that addresses the unique nature of these technologies. They will also help cultivate future growth in this rapidly progressing field.
這 10 項(xiàng)指導(dǎo)原則旨在為制定應(yīng)對(duì)此類技術(shù)獨(dú)特性的良好實(shí)踐奠定基礎(chǔ),同時(shí)也將助力推動(dòng)這一飛速發(fā)展領(lǐng)域的未來(lái)成長(zhǎng)。
 
The 10 guiding principles identify areas where the international regulators, international standards organisations, and other collaborative bodies could work to advance good practice in drug development.
這 10 項(xiàng)指導(dǎo)原則明確了國(guó)際監(jiān)管機(jī)構(gòu)、國(guó)際標(biāo)準(zhǔn)組織以及其他合作機(jī)構(gòu)可著力推進(jìn)藥物研發(fā)良好實(shí)踐的工作領(lǐng)域。
 
Areas of collaboration include research, creating educational tools and resources, international harmonisation, and consensus standards, which may help inform regulatory policies and regulatory guidelines in different jurisdictions, in line with applicable legal and regulatory frameworks.
合作領(lǐng)域包括開展研究、開發(fā)教育工具與資源、推進(jìn)國(guó)際協(xié)調(diào)以及制定共識(shí)標(biāo)準(zhǔn)。這些工作可結(jié)合適用的法律法規(guī)框架,為不同司法管轄區(qū)的監(jiān)管政策和監(jiān)管指南提供參考。
 
As the use of AI in drug development evolves, so too must good practice and consensus standards. Strong partnerships with international public health partners will be crucial to empower stakeholders to advance responsible innovations in this area.
隨著AI在藥物研發(fā)中的應(yīng)用不斷發(fā)展,相關(guān)良好實(shí)踐和共識(shí)標(biāo)準(zhǔn)也必須與時(shí)俱進(jìn)。與國(guó)際公共衛(wèi)生合作伙伴建立緊密的合作關(guān)系,對(duì)于賦能利益相關(guān)方在該領(lǐng)域推進(jìn)負(fù)責(zé)任的創(chuàng)新至關(guān)重要。
 
Thus, this initial collaborative work can inform our broader international engagements.
因此,這項(xiàng)初步的合作成果可為我們更廣泛的國(guó)際合作提供參考。
 
Principles
指導(dǎo)原則
 
1.Human-centric by design
設(shè)計(jì)以人類為中心
 
The development and use of AI technologies align with ethical and human-centric values.
AI技術(shù)的開發(fā)與使用需與倫理及以人為本的價(jià)值觀保持一致。
 
2.Risk-based approach
基于風(fēng)險(xiǎn)的方法
 
The development and use of AI technologies follow a risk-based approach with proportionate validation, risk mitigation, and oversight based on the context of use and determined model risk.
AI技術(shù)的開發(fā)與使用需遵循基于風(fēng)險(xiǎn)的方法,根據(jù)使用場(chǎng)景和已確定的模型風(fēng)險(xiǎn),采取相應(yīng)的驗(yàn)證、風(fēng)險(xiǎn)緩解及監(jiān)督措施。
 
3.Adherence to standards
遵守標(biāo)準(zhǔn)
 
AI technologies adhere to relevant legal, ethical, technical, scientific, cybersecurity, and regulatory standards, including Good Practices (GxP).
AI技術(shù)需遵守相關(guān)的法律、倫理、技術(shù)、科學(xué)、網(wǎng)絡(luò)安全及監(jiān)管標(biāo)準(zhǔn),包括良好實(shí)踐規(guī)范(GxP)。
 
4.Clear context of use
明確的使用場(chǎng)景 
 
AI technologies have a well-defined context of use (role and scope for why it is being used).
AI技術(shù)需具備明確的使用場(chǎng)景(即其使用的角色與范圍)。
 
5.Multidisciplinary expertise
多學(xué)科專業(yè)知識(shí)
 
Multidisciplinary expertise covering both the AI technology and its context of use are integrated throughout the technology’s life cycle.
涵蓋AI技術(shù)及其使用場(chǎng)景的多學(xué)科專業(yè)知識(shí),需貫穿該技術(shù)的整個(gè)生命周期。
 
6.Data governance and documentation
數(shù)據(jù)治理與文件記錄
 
Data source provenance, processing steps, and analytical decisions are documented in a detailed, traceable, and verifiable manner, in line with GxP requirements. Appropriate governance, including privacy and protection for sensitive data, is maintained throughout the technology’s life cycle.
數(shù)據(jù)來(lái)源的溯源、處理步驟及分析決策需以詳細(xì)、可追溯、可驗(yàn)證的方式記錄,符合 GxP 要求。在技術(shù)的整個(gè)生命周期中,需持續(xù)維護(hù)恰當(dāng)?shù)闹卫泶胧?,包括敏感?shù)據(jù)的隱私與保護(hù)。
 
7.Model design and development practices
模型設(shè)計(jì)與開發(fā)實(shí)踐
 
The development of AI technologies follows best practices in model and system design and software engineering and leverages data that is fit-for-use, considering interpretability, explainability, and predictive performance. Good model and system development promotes transparency, reliability, generalisability, and robustness for AI technologies contributing to patient safety.
AI技術(shù)的開發(fā)需遵循模型、系統(tǒng)設(shè)計(jì)及軟件工程領(lǐng)域的最佳實(shí)踐,并使用適用的數(shù)據(jù),同時(shí)考慮可解釋性、可說(shuō)明性與預(yù)測(cè)性能。良好的模型與系統(tǒng)開發(fā)需提升人工智能技術(shù)的透明度、可靠性、通用性與穩(wěn)健性,以助力患者安全。
 
8.Risk-based performance assessment
基于風(fēng)險(xiǎn)的性能評(píng)估
 
Risk-based performance assessments evaluate the complete system including human-AI interactions, using fit-for-use data and metrics appropriate for the intended context of use, supported by validation of predictive performance through appropriately designed testing and evaluation methods.
基于風(fēng)險(xiǎn)的性能評(píng)估需對(duì)包含人機(jī)交互的完整系統(tǒng)進(jìn)行評(píng)估,使用適用于預(yù)期使用場(chǎng)景的適用數(shù)據(jù)與指標(biāo),并通過(guò)恰當(dāng)設(shè)計(jì)的測(cè)試與評(píng)估方法驗(yàn)證預(yù)測(cè)性能。
 
9.Life cycle management
生命周期管理
 
Risk-based quality management systems are implemented throughout the AI technologies’ life cycles, including to support capturing, assessing, and addressing issues. The AI technologies undergo scheduled monitoring and periodic re-evaluation to ensure adequate performance (e.g., to address data drift).
基于風(fēng)險(xiǎn)的質(zhì)量管理體系需貫穿AI技術(shù)的整個(gè)生命周期,包括支持問(wèn)題的捕獲、評(píng)估與解決。AI技術(shù)需接受定期監(jiān)測(cè)與周期性重新評(píng)估,以確保其性能達(dá)標(biāo)(例如應(yīng)對(duì)數(shù)據(jù)漂移)。
 
10.Clear, essential information
清晰的關(guān)鍵信息
 
Plain language is used to present clear, accessible, and contextually relevant information to the intended audience, including users and patients, regarding the AI technology’s context of use, performance, limitations, underlying data, updates, and interpretability or explainability.
需使用通俗易懂的語(yǔ)言,向目標(biāo)受眾(包括用戶與患者)呈現(xiàn)清晰、易獲取且符合場(chǎng)景的信息,內(nèi)容涵蓋AI技術(shù)的使用場(chǎng)景、性能、局限性、底層數(shù)據(jù)、更新及可解釋性。
 
EMA、FDA聯(lián)合發(fā)布《藥物研發(fā)中良好AI實(shí)踐指南》!
分享到:

來(lái)源:GMP辦公室

相關(guān)新聞: